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ABSTRACT 

Biodiesel is a fuel consisting of the alkyl monoesters of fatty acids from vegetable oils 

or animal fats. Biodiesel is receiving increasing attention as an alternative, non-toxic, 

biodegradable and renewable diesel fuel. Many studies have shown that the properties of 

biodiesel are very close to diesel fuel. Therefore, biodiesel can be used in diesel engines with 

little or no modification. 

Biodiesel is usually produced from food-grade vegetable oils that are more expensive 

than diesel fuel. Therefore, use of biodiesel produced from food-grade vegetable oil may be 

limited to cases of severe shortages or emergencies. However, lower cost feedstocks are 

available. Rendered animal fats and restaurant waste oils are an attractive source to produce 

biodiesel. The problem with processing rendered fats and oils is that they usually contain 

large amounts of free fatty acids that cannot be converted to biodiesel using an alkaline 

catalyst due to the formation of soaps. An alternative way is to use acid catalysts, which are 

more tolerant of free fatty acids. 

The objective of this study was to develop a process to utilize rendered fats, known as 

yellow grease, as a biodiesel feedstock and to build a pilot plant to implement this process. 

The pilot plant was successfully constructed and was shown to be capable of processing 

rendered fats containing 40% free fatty acids. 

After preparing a sufficient amount of biodiesel from rendered animal fats and 

restaurant waste oils, the impact of the biodiesel on diesel engine exhaust emissions and 

engine performance was evaluated and compared to No. 2 diesel fuel and soybean oil methyl 

ester. The methyl esters produced from yellow grease gave nearly the same thermal 

efficiency but higher fuel consumption compared with No. 2 diesel fuel. At the operating 
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condition studied, the biodiesel produced 17.77% and 46.27% lower CO and HC emissions, 

respectively, than No. 2 diesel fuel. The Bosch Smoke Number for biodiesel from yellow 

grease was 64.21% less than with No. 2 diesel fuel. The methyl esters had 11.60% higher 

NOx emissions than the No. 2 diesel fuel. No significant differences were found in the 

exhaust emissions and engine performance between the biodiesel produced from yellow 

grease and biodiesel from soybean oil. 
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1. INTRODUCTION 

Rudolph Diesel, a German engineer, introduced the diesel engine over a century ago 

[I]. Since then a great deal of research and development has taken place not only in the 

design area but also in finding an appropriate fuel. For many years, the ready availability of 

inexpensive middle-distillate petroleum fuels provided little incentive for experimenting with 

alternative, renewable fuels for diesel engines. However, since the oil crisis of the 1970s, 

research interest has expanded in the area of alternative fuels. Many proposals have been 

made regarding the availability and practicality of an environmentally sound fuel that could 

be domestically sourced. Methanol, ethanol, compressed natural gas (CNG), liquefied 

petroleum gas (LPG), liquefied natural gas (LNG), vegetable oils, reformulated gasoline, and 

reformulated diesel fuel have all been considered as alternative fuels. Of these alternative 

fuels, only ethanol and vegetable oils are non-fossil fuels. 

The alkyl monoesters of fatty acids from vegetable oils and animal fats, known as 

biodiesel, are receiving increasing attention as an alternative, non-toxic, biodegradable and 

renewable diesel fuel. Many studies have shown that the properties of biodiesel are very 

close to diesel fuel. Therefore, biodiesel fuel can be used in diesel engines with little or no 

modification. Biodiesel has a higher cetane number than diesel fuel, no aromatics, no sulfur, 

and contains 10 to 11% oxygen by weight. These characteristics of biodiesel reduce the 

emissions of carbon monoxide (CO), hydrocarbon (HC), and particulate matter (PM) in the 

exhaust gas compared to diesel fuel. 

In Europe, a specific type of biodiesel called rapeseed methyl ester (RME) is widely 

used as a fuel source. Only recently has the United States considered these non-petroleum 
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oils to be a reasonable source of alternative fuel. The low volatility and high cetane number 

of vegetable oils and their derivatives render them better suited for use in diesel engines than 

spark-ignited engines [2, 3]. 

Many researchers have concluded that vegetable oils hold promise as alternative fuels 

for diesel engines [4, 5], However, using raw vegetable oils for diesel engines can cause 

numerous engine-related problems [6, 7], The increased viscosity and low volatility of 

vegetable oils lead to severe engine deposits, injector coking, and piston ring sticking [8-11]. 

However, these effects can be reduced or eliminated through transesterification of the 

vegetable oil to form a methyl ester [8, 12]. The process of transesterification removes 

glycerin from the triglycerides and replaces it with radicals from the alcohol used for the 

conversion process [13, 14]. This process decreases the viscosity but maintains the cetane 

number and the heating value. 

One drawback of biodiesel is that there is a tradeoff between biodiesel's level of 

saturation and its cold flow properties. Table 1.1 shows the fatty acid distribution of some 

common vegetable oils and animal fats. Saturated compounds (CI4:0, myristic acid; CI6:0, 

palmitic acid; CI8:0, stearic acid) have higher cetane numbers and are less prone to oxidation 

than unsaturated compounds but they tend to crystallize at unacceptably high temperatures. 

Biodiesel from soybean oil is highly unsaturated so its cold flow properties are acceptable, 

however it is more prone to oxidation. The impact of this oxidation on the engine's 

performance and emissions is not currently understood. 

Over the past 7 years, considerable research has been conducted to investigate the 

properties of biodiesel, its performance in engines, and to provide the supporting data needed 

to satisfy the Environmental Protection Agency's Fuels and Fuel Additives Registration 



www.manaraa.com

3 

Table 1.1: Fatty acid distribution of some vegetable oils and animal fats 

Product 
Fatty Acid Distribution (% by weight) Saturation 

Level (%) 
Ref. 
No. 

Product 
C14:0 C16:0 C16:l C18:0 C18:l C18:2 C18:3 

Saturation 
Level (%) 

Ref. 
No. 

Rapeseed Oil - 3.49 - 0.85 64.40 22.30 8.23 4.34 5 
Sunflower Oil - 6.08 - 3.26 16.93 73.73 - 9.34 5 
Safflower Oil - 8.60 - 1.93 11.58 77.89 - 10.53 5 
Soybean Oil - 10.58 - 4.76 22.52 52.34 8.19 15.34 * 

Lard 1-2 28-30 - 12-18 40-50 7-13 - 41-50 15 
Tallow 3-6 24-32 - 20-25 37-43 2-3 - 47-63 15 

Yellow Grease 2.43 23.24 3.79 12.96 44.32 6.97 0.67 38.63 * 

Brown Grease 1.66 22.83 3.13 12.54 42.36 12.09 0.82 37.03 * 

•Measured by Woodson-Tenent Laboratories, Inc., Des Moines, IA. 

program [16-20]. Virtually all of this work is based on the methyl ester of soybean oil. 

Soybean oil was chosen because, in the United States, soybean oil is the only oil that is 

available in sufficient quantity to supply a national market. However, the cost of food-grade 

soybean oil limits its use in diesel engines. Therefore, biodiesel from food grade vegetable oil 

can be used only in cases of severe shortages or emergency. Reducing the cost of the 

feedstock is necessary for biodiesel to be commercially viable. 

Waste vegetable oil from restaurants and rendered animal fats are inexpensive 

compared with food-grade vegetable oil. Approximately 2.5 billion pounds of waste 

restaurant fats are collected annually from restaurants and fast-food establishments in the 

U.S. [21]. The problem with processing waste oils is that they usually contain large amounts 

of free fatty acids that cannot be converted to biodiesel using an alkaline catalyst due to 

formation of soaps. The soaps can prevent separation of the biodiesel from the glycerin 

fraction. An alternative method is to use acid catalysts which some researchers have claimed 

are more tolerant of free fatty acids [22-24], A significant number of research studies have 

been conducted related to the esterification of vegetable oils with different alkaline catalysts. 
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However, there have been only a few studies about esterification with acid catalysts. 

The properties of biodiesel vary somewhat depending on the oil feedstock and alcohol 

used but are always very close to diesel fuel [25-27]. The American Society for Testing and 

Materials (ASTM) is currently developing a standard for biodiesel. The proposed standard is 

based on the specifications developed by the National Biodiesel Board shown in Table 1.2 

[28]. The objective of this standard is to have biodiesel meet the performance requirements 

of engines without specifying the actual composition of the fuel. This will allow biodiesel to 

be made from any feedstock as long as the standard can be met. This is the approach 

currently used with petroleum-based diesel fuel. 

The primary objective of this project was to investigate the use of low-cost, high free 

fatty acid feedstocks to produce commercially viable biodiesel. To accomplish this objective 

the following tasks were identified. 

> Develop a technique to convert high free fatty acid feedstocks to fuel quality biodiesel. 

> Implement the biodiesel production technique in a pilot plant. 

> Compare the performance and emissions of a diesel engine fueled with biodiesel from 

high free fatty acid feedstocks with biodiesel from soybean oil and with petroleum-based 

diesel fuel. 
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Table 1.2: The National Biodiesel Board specifications for biodiesel [28| 

Property ASTM Method Limits Units 
Flash Point D 93 100 min °C 

Water and Sediment D 1796 0.050 max Vol. % 
Carbon Residue, 100% sample D 4530 0.050 max wt % 
Sulfated Ash D 874 0.020 max wt % 
Kinematic Viscosity, 40°C D 445 1.9-6.0 mnv/sec 
Sulfur D 2622 0.05 max wt % 
Cetane Number D 613 40 min -

Cloud Point D 2500 By customer °C 

Copper Strip Corrosion D 130 No. 3b max -

Acid Number D 664 0.80 max mg KOH/g 
Free Glycerin GC* 0.020 max wt % 
Total Glycerin GC* 0.240 max wt % 

* Method by C. Plank [29] 



www.manaraa.com

6 

2. REVIEW OF LITERATURE 

This chapter includes the background information on biodiesel as well as a review of 

the relevant literature. The first two sections present the information about vegetable oils and 

transesterification. Next two sections discuss the transesterification of the oils and fats with 

high free fatty acids in small scale and large-scale production. Then, the potential of the 

rendered animal fat and restaurant waste oils in the United States and Iowa is presented. This 

is followed by a discussion of the chemical properties of the rendered animal fat and 

restaurant waste oils. Finally, diesel engine emissions from biodiesels produced from 

different feedstocks will be discussed. 

2.1. Vegetable Oils 

In the 1930s and 1940s, vegetable oils were used as emergency fuels [30]. These oils 

contain no sulfur but have about 10% oxygen, by weight. This tends to reduce their carbon 

monoxide, unbumed hydrocarbons, sulfur dioxide, and particulate emissions when compared 

to diesel fuel. Therefore, using vegetable oil-based fuels may reduce air pollution. 

Vegetable oils are fatty esters of glycerin (triglycerides) and have the chemical 

structure shown in Figure 2.1 [31]: where R,, R2, and R3 represent the hydrocarbon chain of 

the fatty acids. R,, R2, and R3 depend on the particular oil, but for vegetable oils and animal 

fats usually contain 16-18 carbons and from 0 to 3 double bonds. The term oil is generally 

used for triglycerides that are liquid at ambient temperature and fat is used when the 

triglycerides are solid. 

Although many of the properties of vegetable oil are similar to diesel fuel, the 

viscosity of the vegetable oil is much higher. Due to the high viscosity of the vegetable oils, 
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Figure 2.1: Chemical structure of a triglyceride 

problems such as injector coking, piston ring sticking, and thickening of the lubricating oil 

have arisen when engines have been fueled with vegetable oils [32-36]. 

2.2. Transesterification 

One approach to reducing the viscosity of vegetable oils is transesterification. 

Transesterification is a chemical process of reacting vegetable oils with alcohol in the 

presence of a catalyst as shown in Figure 2.2. 

The monoesters produced by transesterification of vegetable oils or animal fats are 

known as biodiesel. Transesterification significantly reduces the viscosity of vegetable oils 

without affecting the heating value of the original fuel. Therefore, fuel atomization, 

combustion, and emission characteristics will display better results than pure vegetable oil if 

the esters of vegetable oils are used in engines. Alcohols such as ethanol, methanol, or 

butanol can be used in the transesterification and the monoesters are named methyl esters, 

ethyl esters, or butyl esters, respectively. 

The catalysts used in transesterification are generally classified in two categories, 

acidic and alkaline. The most commonly preferred acid catalysts are sulfuric, sulphonic, and 
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Figure 2.2: Transesterification of triglyceride using methanol and catalyst 

hydrochloric acids and sodium hydroxide, sodium methoxide, and potassium hydroxide are 

preferred as alkaline catalysts. 

The residue of the catalyst in the ester may cause some engine problems. In 

particular, acid catalysts will attack metallic engine parts and alkaline catalysts produce solid 

ash particles during combustion. Therefore, the catalyst in the ester must be removed from 

the fuel when the reaction is complete. This is usually done by washing the ester with water. 

Feuge and Gros [37] investigated the effect of catalyst amount, ethanol concentration, and 

temperature on the transesterification of peanut oil. They used sodium hydroxide as a 

catalyst. To obtain the effect of catalyst and ethanol concentration on the free glycerin yield, 

they selected five different combinations of alcohol/oil molar ratio and catalyst percentage at 

a constant temperature of 50°C. After running each test for about 200 minutes, they found 

that a stoichiometric molar ratio of alcohol to oil and 0.2% catalyst yielded the minimum 

glycerin and a molar ratio of 2 times the stoichiometric amount of alcohol to oil and 0.8% 

catalyst gave the maximum glycerin amount or the most complete reaction. To determine the 
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effect of temperature, three temperature levels (30°C, 50°C, and 70°C) were selected. By 

using 2 times the stoichiometric amount of alcohol/oil ratios and 0.2% catalyst percentages, 

the variation of glycerin with temperature was found after 16 hours of reaction time. The 

glycerin yields were 86% and 91% at 30°C and 50°C, respectively. During the first few 

minutes of the reaction the rate of alcoholysis was greatest at 70°C. However, the optimum 

temperature for glycerin yield from peanut oil with ethanol was found to be 50°C and the 

lowest yield was at 70°C. The authors did not suggest a reason for this result. 

Formo [38] published a review about the acid catalyzed ester reactions of fatty 

materials. Formo states that the methyl esters can be prepared from fatty acids by using a 

large excess of methanol (15 to 35 moles per mole of fatty acid) and sulfuric acid as a 

catalyst. After refluxing (a reaction at the alcohol's boiling temperature but where vaporized 

alcohol is condensed and returned to the reaction) for several hours, ester yields of 95% or 

higher can be obtained. 

Hartman [39] investigated six different alkali catalysts at 60°C and reflux conditions 

to determine the most effective catalyst on ox fat, coconut oil, and linseed oil after 

neutralizing the oils with sodium hydroxide, washing, and drying in vacuum. The reaction 

mixtures were acidified with acetic acid and then the esters were extracted with ethyl ether 

and washed with water. After two hours of reaction time, sodium methoxide and ignited 

potassium carbonate were found to set free 99-99.5% of the total glycerin and cause the least 

degree of saponification (sodium or potassium from the catalyst combining with free fatty 

acids to form soaps). The amounts of the catalysts were 0.5% and 10.0% for sodium 

methoxide and ignited potassium carbonate, respectively. 

Luddy et al. [40] studied the production of methyl esters from the lipids of plasma, 
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cells, liver, and soybeans using potassium methoxide as a catalyst. They reported that 92-

96% conversion to methyl ester could be obtained with methanolysis (the transesterification 

reaction of the added alcohol, methanol). They also compared the effect of the amount and 

concentration of sodium methoxide catalyst and the reaction time on the yield of methyl 

esters from cholesterol esters. The effectiveness of sodium methoxide and potassium 

methoxide on methanolysis was also compared in this paper. Potassium methoxide was 

found to be more effective and produced greater conversion to methyl esters than sodium 

methoxide. 

Gauglitz and Lehman [41] studied straight- and branched-chain alcohols having 1-6 

carbon atoms in esterification reactions. Ethyl, methyl, n-propyl, i-propyl, n-butyl, i-butyl, 

and n-hexyl esters were prepared at the same conditions. In that research they esterified 

highly unsaturated fish oil using metallic sodium dissolved in the alcohols as a catalyst. They 

found that the conversion of straight-chain esters was a linear function of the number of 

carbon atoms in the alcohol. No reaction was observed when t-butyl alcohol was used. The 

reaction times varied from 2 minutes for methanol to 60 minutes for n-hexanol. Branched-

chain alcohols (such as isopropyl alcohol) were found to react more slowly than straight-

chain alcohols (such as methanol). 

McGinnis and Dugan [42] compared three methods for preparing methyl esters of 

different fatty acids. The methods were a base-catalyzed interesterification method, a 

saponification and esterification method, and a low temperature sulfuric acid method. They 

concluded that the low temperature sulfuric acid method has some advantages compared to 

the other two methods. It directly converts the fatty acid component to methyl esters without 

the need for saponification and isolation of the fatty acids. In this respect it resembles base-
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catalyzed interestedfication. Another advantage of the low temperature sulfuric acid method 

is that it does not promote any conjugation of double bonds. Conjugation of double bonds 

can occur under the conditions of base-catalyzed interesterification and results in esters that 

are more prone to oxidation. 

Freedman and Pryde [23] investigated the effects of reaction variables on 

transesterification using sunflower and soybean oils. They studied different molar ratios of 

alcohol to oil, alcohol types, catalyst types, and reaction temperature. In that study, ester 

conversions of 90 to 97% were obtained by using alcohol to oil molar ratios of 4:1 and 6:1, 

respectively, with an alkaline catalyst. Below the theoretical ratio (3:1), the residual levels of 

tri-, di-, and monoglycerides were found to increase. When using methyl, ethyl, and butyl 

alcohol to esterify sunflower oil, the percentages of methyl, ethyl and butyl esters were 98%, 

96%, and 96%, respectively, after a 1-hour reaction period. They also compared two catalysts 

(sodium hydroxide and sodium methoxide) at 6:1 and 3:1 molar ratios and found that sodium 

methoxide (0.5%) was more effective than sodium hydroxide (1%) at the 3:1 molar ratio. At 

the 6:1 molar ratio, the catalysts were equally effective. 

Freedman and Pryde [23] also used sulfuric acid to transesterify soybean oil. A 30:1 

molar ratio of methanol to soybean oil with 1% sulfuric acid gave good conversion after 44 

hours of heating at 60°C. Butyl alcohol with 1% sulfuric acid converted the oil to 98% ester 

after 4 hours of heating at 114°C. They emphasized that if vegetable oil has more than 1% 

free fatty acids, the free fatty acids will destroy an alkali catalyst where an acid catalyst 

would still be effective. To investigate the effect of temperature, a mixture of 6:1 molar ratio 

of methanol to soybean oil with 1% sodium hydroxide was reacted at temperatures of 32°C, 

45°C, and 60°C. After 1 hour of reaction time, the 45°C and 60°C conditions gave 97% ester 
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but the 32°C condition gave a slightly lower conversion of 92%. 

Nye et al. [43] performed a study to produce methyl esters from used frying oil. After 

filtering, the free fatty acid content of the used frying oil was measured to be 1.5%, which is 

actually quite low and not a good test of the technology needed to utilize waste oils. 

Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-ethoxyethanol were evaluated as 

alcohols and sulfuric acid (0.1%) and potassium hydroxide (0.4%) were evaluated as acid 

and base catalysts, respectively. The highest ester productions at 25°C were found with 1-

butyl ester with an acid catalyst, which gave 81% conversion, methyl ester with a base 

catalyst, which gave 74% conversion, and ethyl ester with an acid catalyst, which gave 72% 

conversion. 

Freedman and co-workers [44] investigated the variables that affect ester formation 

from cottonseed, peanut, soybean, and sunflower oils. They reported the effects of molar 

ratio of alcohol to vegetable oil, of temperature, and of the type of catalyst (base or acidic). 

They stressed that the yields of ester were reduced significantly if some reaction conditions 

did not meet certain requirements such as an acid value less than 1 mg KOH/g and alcohol 

and vegetable oil that are moisture free. The molar alcohol to oil ratio was varied from 1:1 to 

6:1 and the highest conversion was obtained at the 6:1 molar ratio, which gave 98%. The 

other oils also showed simi.'ar behavior at varying molar ratios and the highest yields of ester 

were between 93% and 98%. In that study, the effect of temperature on the ester yield was 

also monitored. They studied a 6:1 molar ratio of methanol to soybean oil with 1% sodium 

hydroxide catalyst at three temperature levels, 60°C, 45°C, and 32°C. After 0.1 hour, the ester 

formations were 94%, 87%, and 64%, respectively. However, they noted that identical 

amounts of esters were converted at the three temperature levels after 1 hour of reaction time. 
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They also compared acid (sulfuric acid) and base (sodium hydroxide) catalysis. For this 

experiment, 6:1, 20:1, and 30:1 molar ratios were selected to characterize acid catalysis. The 

molar ratios of 6:1 and 20:1 gave unsatisfactory ester conversion even after 18 hours of 

reaction time. The highest conversion (no number was given) with the acid catalyst was 

found at the 30:1 molar ratio. Samples of 30:1 molar ratio of alcohol to soybean oil with 1% 

acid catalyst were investigated at three temperatures. The temperatures selected were a few 

degrees below the boiling temperatures of the alcohols, 65°C, 78°C, and 117°C for methyl, 

ethyl, and butyl alcohol, respectively. They found the ester conversions reached a maximum 

after 3, 22, and 69 hours for butyl, ethyl, and methyl alcohol, respectively, but the 

transesterification reaction by acid catalysis was much slower than by base catalysis. 

Nye and Southwell [45] have reported the results of several important reaction 

parameters on the methyl and ethyl esters of rapeseed oil at room temperature conditions. 

Catalyst type and concentration and molar ratio were identified as the primary reaction 

variables. They tested the following catalysts: magnesium and calcium oxides and 

carbonates, basic and acidic macroreticular organic resins, alkaline alumina, sodium and 

potassium hydroxides and alkoxides, phase transfer catalysts, sulfuric acid, p-toluenesulfonic 

acid, and dehydrating agents as co-catalysts. They concluded that only alkoxides and 

hydroxides were effective at room temperature. Using a 6:1 molar ratio of methanol to 

rapeseed oil with 1% sodium hydroxide gave the maximum amount of ester for the molar 

ratios studied. 

Freedman et al. [46] studied transesterification kinetics of soybean oil by using 

various types of catalysts. By using a computer-modeling program, they calculated the rate 

constants of the reactions of butyl alcohol with soybean oil for a 6:1 molar ratio at different 
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temperature and catalyst conditions. They concluded that the rate constants for the alkaline-

catalyzed reactions were much larger than for the acid-catalyzed reactions. 

As with many earlier researchers, Schwab and co-workers [47] found that molar ratio, 

temperature, and catalyst type were the main variables in transesterification. In their review, 

it was also noted that the highest ester yield was obtained at twice that required by the 

stoichiometry of the mixture of methanol and soybean oil with 0.5% sodium methoxide at 

60°C. They emphasized that alkali-catalyzed transesterification converts faster compared to 

acid-catalyzed transesterification. One percent sodium hydroxide as a catalyst showed a 

stronger effect than 0.5% sodium methoxide. They concluded that, when given enough time, 

vegetable oils can be transesterified satisfactorily with sodium hydroxide at ambient 

temperature. 

Liu [24] has also noted that there are many potential catalysts, and characterized the 

most common as acidic (HC1, H2SO4, and BF3) and alkaline (NaOCHj, KOH, and NaOH). 

Liu compared the catalysts and noted that acid catalysis can esterify triglycerides and other 

complex lipids and free fatty acids in alcohol. Heating is required for faster reaction and the 

reaction time may vary from a few minutes to several hours. He mentioned that although 

boron fluoride alcoholate has higher esterifying capability, it is toxic and expensive. It also 

has a limited shelf life. Sulfuric acid-methanol solution (HzSOVMeOH) is preferred to 

hydrochloric acid-methanol solution (HCl/MeOH) because of its easy preparation. Liu also 

mentioned that base catalysts are much faster than acid catalysts. However, they are unable to 

esterify free fatty acids so Liu concluded that the acid value of the oil or fat should be less 

than 2 mg KOH/g. 

Muniyappa et al. [48] studied esterification of plant oils and animal fats for fuel 
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purposes. In their work, the objective was to optimize the catalyst concentration and reaction 

time without reduction of the transesterification yield of soybean oil. Sodium hydroxide was 

used as a catalyst and its effect was investigated by changing its concentration from 0.5 to 

0.05% in a 30:1 molar ratio of methanol to soybean oil. They noted that the catalyst 

concentration did not have a significant effect on the conversion. All reactions were run at 

about 68-70°C, with a 90-minute reaction time, and with soybean oil having an acid value 

less than 0.05 mg KOH/g. They found that 98% conversion could be obtained with 0.1% 

catalyst after only 5-10 minutes of reaction time. 

Boocock et al. [49, 50] have developed a new method which forms methyl esters in 

less time than traditional methods. They found that simple ethers, such as tetrahydrofuran 

(THF), which was the best found so far, and methyl tertiary butyl ether (MTBE) could be 

used as cosolvents for the alcohol and oil and caused faster transesterification. They used the 

following methods. Vegetable oil and anhydrous THF were mixed together and sodium 

hydroxide solution in methanol was added to the mixture while stirring. Adding an amount of 

THF equal to approximately 1.25 times the volume of methanol caused a modest increase in 

the total volume of the mixture, but a significant reduction in reaction time occurred at a 

methanol to oil molar ratio of 6:1 using 1.0 wt% sodium hydroxide catalyst and a 

temperature of 23°C. Boocock found that 95.0 wt% methyl ester was formed in 20 minutes. 

They extended their study for four different sodium hydroxide catalyst concentrations for a 

6:1 molar ratio. The ester contents after 1 minute for 1.1, 1.3, 1.4 and 2.0 wt% (based on the 

oil) sodium hydroxide were 82.5, 85.0, 87.0, and 96.2 %, respectively. When the methanol to 

oil ratio was varied from 25:1 to 40:1 for 1% sodium hydroxide catalyst, the ester 

conversions were 94.7, 98.3, 98.0, 96.2, and 95.0% after 5 minutes for 25:1, 27:1, 28:1, 35: 
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1, and 40:1 molar ratios, respectively. However, the highest ester conversion was 99.4 wt% 

at the molar ratio of 27:1 after 7 minutes. At 40:1 molar ratio, the conversion was 95 wt% 

after 5 minutes while the 27:1 molar ratio gave 98.3 wt% in the same reaction time. 

Table 2.1 summarizes the effects of the molar ratio, catalyst type and amount, alcohol 

type and amount, and temperature on the ester conversion for small scale transesterification 

processes. 

2.3. The Transesterification of Oils and Fats with High Free Fatty Acids 

Biodiesel is currently produced from food-grade vegetable oils that are more 

expensive than diesel fuel. However, lower cost feedstocks are available, specifically waste 

vegetable oils and fats. Rendered animal fats and restaurant greases are sold commercially as 

animal feed. If the free fatty acid (FF A) level is less than 15% it is called yellow grease and if 

it is above 15% it is called brown grease. 

Some researchers [51-55] have focused on the use of rendered animal fats and 

restaurant waste oils as diesel fuel extenders. However, the amount of oil that can be added to 

the diesel fuel is limited by the same concerns discussed earlier for refined oils. Rendered 

animal fats and restaurant waste oils are an attractive source to produce biodiesel. There are 

large amounts of waste vegetable oils from the food industry that could be converted to 

biodiesel. This section reviews previous work on the production of biodiesel from rendered 

animal fats and restaurant waste oils with high FF A levels. 

To prepare esters with a high yield, it is necessary for the feedstock to have a low acid 

value. The acid value is a measure of the number of acidic functional groups in a sample and 

is measured in terms of the quantity of a powerful base (potassium hydroxide) required to 
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Table 2.1: Summary of the small scale transesterification processes 

Type and Amount of Oil and 
Alcohol (Molar Ratio) 

Catalyst Temp. 
<°C) 

Reaction 
Time 

Conversion 
(%) 

Ref. 
No. 

Peanut oil & ethanol 
(1:2) 

Sodium hydroxide 
(0.2%) 

30 16 Hours 86.0 37 

Peanut oil & ethanol 
(1:2) 

Sodium hydroxide 
(0.2%) 

50 16 Hours 91.0 37 

Peanut oil & ethanol 
(1:2) 

Sodium hydroxide 
(0.2%) 

70 16 Hours <86.0 37 

Ox fat & methanol 
(25% Methanol, as wt.) 

NaOCH2 

(0.5%) 
60 2 Hours 99.39 39 

Ox fat & methanol 
(25% Methanol, as wt.) 

NaOH 
(0.5%) 

60 4 Hours 97.84 39 

Ox fat & methanol 
(25% Methanol, as wt.) 

K2CO3 

(10.0%) 
Reflux 2 Hours 99.35 39 

Ox fat & methanol 
(25% Methanol, as wt.) 

CaO 
(1.5%) 

Reflux 8 Hours 97.25 39 

Ox fat & methanol 
(25% Methanol, as wt.) 

BaO 
(1.5%) 

Reflux 8 Hours 82.94 39 

Ox fat & methanol 
(25% Methanol, as wt.) 

SrO 
(1.5%) 

Reflux 8 Hours 70.30 39 

Coconut oil & methanol 
(25% Methanol, as wt.) 

NaOCH, 
(0.5%) 

60 2 Hours 99.41 39 

Coconut oil & methanol 
(25% Methanol, as wt.) 

NaOH 
(0.5%) 

60 4 Hours 98.02 39 

Coconut oil & methanol 
(25% Methanol, as wt.) 

K,CO, 
(10.0%) 

Reflux 2 Hours 98.92 39 

Coconut oil & methanol 
(25% Methanol, as wt.) 

CaO 
(1.5%) 

Reflux 8 Hours 96.50 39 

Coconut oil & methanol 
(25% Methanol, as wt.) 

BaO 
(1.5%) 

Reflux 8 Hours 89.26 39 

Coconut oil & methanol 
(25% Methanol, as wt.) 

SrO 
(1.5%) 

Reflux 8 Hours 78.41 39 

Linseed oil & methanol 
(25% Methanol, as wt.) 

NaOCH, 
(0.5%) 

60 2 Hours 99.24 39 

Linseed oil & methanol 
(25% Methanol, as wt.) 

NaOH 
(0.5%) 

60 4 Hours 98.11 39 

Linseed oil & methanol 
(25% Methanol, as wt.) 

K2C03 

(10.0%) 
Reflux 2 Hours 99.32 39 

Linseed oil & methanol 
(25% Methanol, as wt.) 

CaO 
(1.5%) 

Reflux 8 Hours 96.87 39 

Linseed oil & methanol 
(25% Methanol, as wt.) 

BaO 
(1.5%) 

Reflux 8 Hours 89.93 39 

Linseed oil & methanol 
(25% Methanol, as wt.) 

SrO 
(1.5%) 

Reflux 8 Hours 75.54 39 

Sunflower Oil & methanol 
(1:1) 

Sodium methoxide 
(0.5%) 

60 I Hour 35.0 47 

Sunflower Oil & methanol 
(1:2) 

Sodium methoxide 
(0.5%) 

60 1 Hour 68.0 47 

Sunflower Oil & methanol 
(1:3) 

Sodium methoxide 
(0.5%) 

60 1 Hour 82.0 47 
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Table 2.1: continued 
Type and Amount of Oil and 

Alcohol (Molar Ratio) 
Catalyst Temp. 

CC) 
Reaction 

Time 
Conversion 

(%) 
Ref. 
No. 

Sunflower Oil & methanol 
(1:4) 

Sodium methoxide 
(0.5%) 

60 1 Hour 90.0 47 

Sunflower Oil & methanol 
(1:5) 

Sodium methoxide 
(0.5%) 60 1 Hour 93.0 47 

Sunflower Oil & methanol 
(1:6) 

Sodium methoxide 
(0.5%) 

60 1 Hour 98.0 47 

Sunflower Oil & methanol 
(1:6) 

Sodium methoxide 
(0.5%) 

60 1 Hour 98.0 23,44 

Sunflower Oil & ethanol 
(1:6) 

Sodium methoxide 
(0.5%) 

75 1 Hour 96.0 23.44 

Sunflower Oil & butanol 
(1:6) 

Sodium methoxide 
(0.5%) 

114 1 Hour 96.0 23,44 

Sunflower Oil & ethanol 
(1:3) 

Sodium methoxide 
(0.5%) 

75 I Hour 81.0 44 

Sunflower Oil & butanol 
(1:3) 

Sodium methoxide 
(0.5%) 

114 1 Hour 88.0 44 

Sunflower Oil & methanol 
(1:3) 

Sodium methoxide 
(0.5%) 

60 1 Hour 82.0 23,44 

Soybean Oil & methanol 
(1:3) 

Sodium hydroxide 
(1.0%) 60 1 Hour -62.0 23,44 

Soybean Oil & methanol 
(1:6) 

Sodium hydroxide 
(1.0%) 

60 1 Hour 97.0 23,44 

Soybean Oil & methanol 
(1:6) 

Sodium hydroxide 
(1.0%) 

45 1 Hour 97.0 23,44 

Soybean Oil & methanol 
(1:6) 

Sodium hydroxide 
(1.0%) 

32 1 Hour 92.0 23,44 

Soybean Oil & methanol 
(1:6) 

Sodium hydroxide 
(1.0%) 32 4 Hours 99.0 23 

Used frying oil & methanol 
(1:3.6) 

Potassium hydroxide 
(0.4%) 50 24 Hours 73.8 43 

Used frying oil & methanol 
(1:3.6) 

Sulfuric acid 
(0.1%) 

-65 40 Hours 52.7 43 

Used frying oil & ethanol 
(1:3.6) 

Potassium hydroxide 
(0.4%) 

50 24 Hours 46.1 43 

Used frying oil & ethanol 
(1:3.6) 

Sulfuric acid 
(0.1%) 

-73 40 Hours 72.0 43 

Used frying oil & 
l-propanol 

(1:3.5) 

Potassium hydroxide 
(0.4%) 

50 24 Hours 31.9 43 

Used frying oil & 
l-propanol 

(1:3.5) 

Sulfuric acid 
(0.1%) 

-90 40 Hours 53.9 43 

Used frying oil & 
2-propanol 

(1:3.5) 

Potassium hydroxide 
(0.4%) 50 24 Hours 2.2 43 

Used frying oil & 
2-propanol 

(1:3.5) 

Sulfuric acid 
(0.1%) 

-80 40 Hours 48.3 43 
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Table 2.1: continued 
Type and Amount of Oil and 

Alcohol fMolar Ratio) 
Catalyst Temp. 

CO 
Reaction 

Time 
Conversion 

(%) 
Ref. 
No. 

Used frying oil & 1-butanol 
(1:3.6) 

Potassium hydroxide 
(0.4%) 50 24 Hours 47.7 43 

Used frying oil & 1-butanol 
(1:3.6) 

Sulfuric acid 
(0.1%) -105 40 Hours 81.3 43 

Used frying oil & 
2-exhoxyethanol 

(1:3.5) 

Potassium hydroxide 
(0.4%) 50 24 Hours 29.4 43 

Used frying oil & 
2-exhoxyethanol 

(1:3.5) 

Sulfuric acid 
(0.1%) 

-125 40 Hours 47.5 43 

Soybean Oil & methanol 
(1:6) 

Sulfuric acid 
(1.0%) 

60 I Hours -0 23 

Soybean Oil & methanol 
(1:30) 

Sulfuric acid 
(1.0%) 

60 44 Hours good 23 

Soybean Oil & butanol 
(1:30) 

Sulfuric acid 
(1.0%) 

114 44 Hours 98 23 

Soybean Oil & methanol 
(1:6) 

Sulfuric acid 
(1.0%) 

65 3 Hours unsatisfactory 44 

Soybean Oil & ethanol 
(1:6) 

Sulfuric acid 
(1.0%) 

78 3 Hours unsatisfactory 44 

Soybean Oil & butanol 
(1:6) 

Sulfuric acid 
(1.0%) 

117 3 Hours unsatisfactory 44 

Soybean Oil & methanol 
(1:20) 

Sulfuric acid 
(1.0%) 

65 18 Hours unsatisfactory 44 

Soybean Oil & ethanol 
(1:20) 

Sulfuric acid 
(1.0%) 

78 18 Hours unsatisfactory 44 

Soybean Oil & butanol 
(1:20) 

Sulfuric acid 
(1.0%) 

117 18 Hours unsatisfactory 44 

Soybean Oil & methanol 
(1:30) 

Sulfuric acid 
(1.0%) 

65 69 Hours -98 44 

Soybean Oil & ethanol 
(1:30) 

Sulfuric acid 
(1.0%) 

78 22 Hours -98 44 

Soybean Oil & butanol 
(1:30) 

Sulfuric acid 
(1.0%) 

117 3 Hours -98 44 

Soybean Oil & methanol 
(1:30) 

Sulfuric acid 
(1.0%) 

65 69 Hours -98 44 

Soybean Oil & ethanol 
(1:30) 

Sulfuric acid 
(1.0%) 

65 69 Hours -98 44 

Soybean Oil & butanol 
(1:30) 

Sulfuric acid 
(1.0%) 65 69 Hours -98 44 

Soybean Oil, methanol &THF 
( 1:6) (THF 1.25 times the vol. 

of methanol) 

sodium hydroxide 
(1.0%) 

23 20 min. 95.0 50 

Soybean Oil, methanol &THF 
( 1:6) (THF 1.25 times the vol. 

of methanol) 

sodium hydroxide 
(1.1%) 23 1 min. 82.5 50 

Soybean Oil, methanol &THF 
(1:6) (THF 1.25 times the vol. 

of methanol) 

sodium hydroxide 
(1.3%) 

23 1 min. 85.0 50 
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Table 2.1: continued 
Type and Amount of Oil and 

Alcohol (Molar Ratio) 
Catalyst Temp. 

CC) 
Reaction 

Time 
Conversion 

(%) 
Ref. 
No. 

Soybean Oil, methanol &THF 
( 1:6) (THF 1.25 times the vol. 

of methanol) 

sodium hydroxide 
(1.4%) 23 1 min. 87.0 50 

Soybean Oil, methanol &THF 
(1:6) (THF 1.25 times the vol. 

of methanol) 

sodium hydroxide 
(2.0%) 

23 1 min. 96.2 50 

Soybean Oil, methanol &THF 
( 1:6) (THF 1.25 times the vol. 

of methanol) 

sodium hydroxide 
(2.0%) 

23 3 min. 98.8 50 

Soybean Oil, methanol &THF 
( 1:6) (THF 1.25 times the vol. 

of methanol) 

sodium hydroxide 
(1.3%) 23 15 min. 95.0 50 

Soybean Oil, methanol &THF 
(1:25) (THF 1.25 times the 

vol. of methanol) 

sodium hydroxide 
(1.0%) 23 5 min. 94.7 50 

Soybean Oil, methanol &THF 
(1:27) (THF 1.25 times the 

vol. of methanol) 

sodium hydroxide 
(1.0%) 

23 5 min. 98.3 50 

Soybean Oil, methanol &THF 
(1:28) (THF 1.25 times the 

vol. of methanol) 

sodium hydroxide 
(1.0%) 

23 5 min. 98.0 50 

Soybean Oil, methanol &THF 
( 1:35) (THF 1.25 times the 

vol. of methanol) 

sodium hydroxide 
(1.0%) 

23 5 min. 96.2 50 

Soybean Oil, methanol &THF 
(1:40) (THF 1.25 times the 

vol. of methanol) 

sodium hydroxide 
(1.0%) 

23 5 min. 95.0 50 

Soybean Oil, methanol &THF 
(1:27) (THF 1.25 times the 

vol. of methanol) 

sodium hydroxide 
(1.0%) 

23 7 min. 99.4 50 

Soybean Oil, methanol &THF 
(1:28) (THF 1.25 times the 

vol. of methanol) 

sodium hydroxide 
(1.0%) 

23 7 min. 99.2 50 

neutralize the sample. It is different from the pH of the sample in that it does not measure the 

strength of the acids. The percentage of FFAs in most vegetable oils and animal fats can be 

estimated by dividing the acid value in half, i.e. 1 mg KOH/g is equivalent to 0.5% FF A. 

With traditional alkali catalyzed processes, free fatty acids escape conversion into 

esters by reacting with the catalyst to form soaps. With acid catalyzed processes, the reaction 

of FFAs with alcohol produces water that inhibits the transesterification of the glycerides. 



www.manaraa.com

21 

In food frying, vegetable oils are used at very high temperatures. This process causes 

various chemical reactions such as hydrolysis, polymerization, and oxidation. Therefore, the 

physical and chemical properties of the oil change during frying. A great deal of research has 

been conducted to characterize these physical and chemical changes [56-59]. The percentage 

of FFAs has been found to increase due to the hydrolysis of triglycerides in the presence of 

food moisture and oxidation. As an example, the FFA level of fresh soybean oil changed 

from 0.04% to 1.51% after 70 hours of frying at 190°C [58]. Increases in viscosity were also 

reported due to polymerization, which resulted in the formation of higher molecular weight 

compounds. Other observations were that the acid value, specific gravity, and saponification 

value of the frying oil increased, but the iodine value decreased. The peroxide value 

increased to a maximum and than started to decrease. The cetane number of a used frying oil 

methyl ester was given as 49 [25]. 

In the transesterification of vegetable oil with alkaline catalysts, other researchers [60, 

44] have emphasized that the vegetable oil and alcohol should not contain water and free 

fatty acids (FFA) since they slow the reaction. Romano [60] investigated the effect of water 

in soybean oil on transesterification with ethanol and 2% sodium hydroxide catalyst. When 

the water amount was changed from 0.15% to 0.66% in the reaction, the glycerine yields 

decreased from 95.4% to 73.2%. 

Feuge et al. [61] studied the kinetics of catalyzed and uncatalyzed reactions in ester 

preparation using mixed fatty acids from peanut oil. They investigated the effects of 

temperature, pressure, and catalyst on the transesterification for an 8-hour reaction time. The 

reaction mixture contained FFAs as high as 90.3%. After a series of runs at 20 mm. Hg 

pressure and varying temperatures (166°C to 241°C) for uncatalyzed reactions, they noted 
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that the FFA concentration in the mixture rapidly decreased as the reaction temperature was 

increased. They tested several catalysts at 200°C and 20 mm. Hg pressure and found zinc 

chloride (ZnCI2) and stannous chloride (SnCh 2H2O) to be more effective than the others. 

They used 0.0008 moles of catalyst per 100 g of fatty acids in each case, and they tested the 

catalysts at various temperatures, 175°C to 250°C for zinc chloride and 150°C to 225°C for 

stannous chloride. They found that, especially at high temperatures, the catalyzed reaction 

followed an entirely different course from that of the uncatalyzed reaction and the 

concentration of FFA sharply decreased in 2 hours. When they extended their study to 

determine the effect of pressure over a range of pressure from 5-mm to 80-mm Hg, with 

0.0008 mole (per 100 g of fatty acids) stannous chloride catalyst, the reaction rate displayed 

little influence. To investigate the effect of catalyst concentration, 0.0004 and 0.0016 moles 

zinc chloride were used. A decrease in the reaction rate was found when the catalyst 

concentration was decreased. 

Freedman and co-workers [44] compared the transesterification of crude and refined 

cottonseed, peanut, soybean, and sunflower oils. They investigated the effects of acid value 

on the methyl ester yield with a 6:1 molar ratio. They noted that the free fatty acid level is 

higher in crude vegetable oils than in refined oils. The ester conversions decreased from 95% 

to 67%, 98% to 83%, 93% to 84%, 97% to 81%, for peanut, soybean, cottonseed, and 

si in flower oil, respectively, when crude oils were used. In that research, it was stressed that 

the yields of ester were reduced significantly when the acid value was higher than 1 mg 

KOH/g. 

Keim et al. [62] studied esterification of fats and fatty oils containing over 50% free 

fatty acids. In this patent, unbleached palm oil containing 50.8% of free fatty acids was used. 
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After preparing a solution of methanol (77% of the weight of the oil) containing sulfuric acid 

(0.75% of the weight of the oil), it was added to the oil and stirred and heated at 69°C for an 

hour and the solution was neutralized with sodium hydroxide to a phenolphthalein end point. 

Then, a solution with 1.25% sodium methoxide was added and stirred for 1 hour at about 

50°C. Then the product was acidified with 10% sulfuric acid and washed with water until 

neutral. The product was dried over anhydrous sodium sulfate, and filtered. Finally, the 

product was distilled under vacuum at a pressure of 4-mm Hg. The yield obtained was 97.0% 

and the acid value of the distillate was equivalent to about 5% as palmitic acid, which is still 

quite high for biodiesel to be used as an engine fuel. 

Stem et al. [63] patented a three step transesterification process. The first step was an 

acid transesterification step in the presence of a branched monoalcohol of I to 5 carbon 

atoms containing 1 to 60% by weight of water. The second step was to reduce the acidity 

(FFA level) of the ester produced in the first step to about 2% using dry alcohol with a trace 

of acid catalyst. And the third step was base catalyst transesterification. They transesterified 

500 g of palm oil containing 5.2% FFA as palmitic acid with 132 g of ethanol of 7% water 

content (because using absolute alcohol is more expensive) and 5 g of sulfonic acid (1% 

based on the oil weight) at 130°C for 2 hours. After cooling, the ester was separated from the 

glycerin. In the first step, the ester had a purity of 89%. In the second step, after evaporating 

the alcohol under vacuum, absolute ethanol with a trace of sulfonic acid was added to 

decrease the acidity of the ester fraction from 3.1 to 0.65%. In the third step, sodium 

hydroxide was added as a base catalyst, and the reaction was continued at 90°C for 0.5 hours. 

After washing 3 times with water and drying, the ester conversion was 98.7%. When they 

used methanol instead of ethanol in step 2, the FFA of the ester fraction decreased to 0.97% 
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and the conversion increased to 99.0%. 

Jeromin et al. [64] developed a process for reducing the free fatty acid level of fats 

and oils below about 1 mg KOH/g. They used 50% to 150% excess methanol and about 0.1 

to 0.2% by weight of sulfonic acid (the amounts depend on the free fatty acid content of oil), 

at a temperature from 55°C to 65°C. The reaction time varied from 10 to 60 minutes. They 

esterified coconut oil having an acid value of 10 mg KOH/g (which was the highest acid 

value among their examples) at 64°C. After the mixture was heated to about 120°C to 

evaporate the alcohol and water, the acid number was reduced to 0.55 mg KOH/g and the 

water content of the oil was 0.08% by weight. 

Wimmer [65] received a patent for converting rapeseed oil with an acid value of 30 

mg KOH/g (about 15% FFAs) to methyl esters. In this work, 5.2 g of potassium hydroxide 

were dissolved in 23 g of methanol and 20 g of the solution were introduced to 100 g of 

rapeseed oil and stirred for 15 minutes. After 1 hour of settling, glycerin and soap were 

separated, and the remaining 8.2 g of methanol solution was added and stirred again for 15 

minutes. After an additional 1 hour of settling, the heavier phase was drained again and 3 ml 

of water were added and stirred for 10 minutes. The mixture was settled for another 2 hours, 

and the methyl ester was separated. The ester contained 1.6% residual fatty acids and 0.008% 

potassium. 

Some researchers have focused specifically on transesterification of waste vegetable 

oils and their use in diesel engines. Mittelbach et al. [25] prepared methyl esters from used 

frying oil and compared their fuel properties to Austrian standards valid for rapeseed oil 

methyl ester. The content of the free fatty acids of the oils was between 0.26 to 2.12%. After 

filtration at 40°C to remove solid particles, the oil was transesterified using alkaline catalysis. 
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They noted that all specification values could be meet by the used vegetable oil esters except 

the cold filter plugging point, which in most cases was above -8°C. 

Isigigur et al. [66] prepared 0, 10, and 20% blends (by volume) of methyl ester of 

used frying oil with No. 2 diesel fuel to compare their fuel properties. They found that the 

heating value and cetane number were a little lower than for No. 2 diesel fuel. The fuel 

properties of the 10 and 20% blends of the ester with diesel fuel were within the range of 

those for pure No. 2 diesel fuel. 

Nye et al. [43] investigated the esters of used frying oil to determine their effects on 

engine performance and emissions. The esters of methanol, ethanol, l-propanol, 2-propanol, 

I-butanol, and 2-ethoxyethanol were prepared using sulfuric acid and potassium hydroxide as 

acid and base catalysts, respectively. They found that all the acid-catalyzed fuels had low 

viscosities, but all base-catalyzed fuels had higher viscosities, except for the methanol-based 

fuel, which was the least viscous of all fuels. The authors noted that the viscosity 

measurements of the esters correlated with the percentage of ester yield. 

Mittelbach and Tritthart [67] prepared methyl esters from used frying oil. A solution 

of potassium hydroxide in methanol was added to used frying oil while stirring. It was 

allowed to settle for 5 hours to separate the glycerin and methyl ester. The ester was washed 

several times with warm water until the pH of the aqueous layer was neutral. After separating 

the aqueous layer and the ester, the ester was dried with anhydrous sodium sulfate and 

filtered. 

Peterson et al. [68] produced biodiesel from waste hydrogenated soybean oil using 

70% excess of the stoichiometric amount of ethanol. The total free fatty acids in the oil were 

neutralized with the addition of alkaline catalyst. Based on the oil weight, 1.3% of KOH was 
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used plus the amount needed to neutralize the free fatty acids. Then the catalyst/alcohol 

mixture was pumped into the oil and the mixture stirred vigorously at 49°C for 2 hours. Ester 

and glycerin were separated after several hours of settling. Complete settling took as long as 

20 hours. After settling was complete, wash water was added at the rate of 5.5% by volume 

of the oil and then stirred for 5 minutes and the glycerin was allowed to settle again. After 

settling was complete, the glycerin was drained and the ester layer remained. The ester was 

washed with the water containing 1 gram of tannic acid per liter of water. The water amount 

was 28% by volume of the oil. At the end, the ester was found to be 92.26% esterified and 

contained 0.3% free glycerin and 0.99% total glycerin. 

Table 2.2 summarizes the effect of molar ratio, catalyst, catalyst amount, alcohol 

type, and temperature, on the ester conversion in transesterification processes of high FFA 

vegetable oils. 

2.4. Pilot Plant Scale Transesterification 

Some researchers have prepared larger amounts of biodiesel to investigate the effect 

on diesel engine performance and exhaust emissions. It is useful to review these studies 

because the preparation of large quantities of fuel can involve special problems and different 

techniques than preparation of small quantities. This is of particular interest since one of the 

tasks of this study is to implement the transesterification process in a pilot plant. 

Hawkins and Fuis [69] used a 2200-liter reactor tank to prepare ethyl esters. In their 

research, after dissolving 7.5 kg of sodium hydroxide in 500 liters of ethanol, 1000 liters of 

degummed sunflower oil were added to the solution. The transesterification reaction 

continued overnight at room temperature (25°C). The catalyst was neutralized with 12 liters 
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Table 2.2: Summary of the transesterification processes of FFA and water content vegetable oils 

Type of Oil and Alcohol 
(Molar Ratio) 

Amount of 
FFA (%) 

Amount of 
Water (%) 

Catalyst 
(%) 

Temp. 
CO 

Reaction 
Time 

Conversion 
(%) 

Ref 
No. 

Coconut oil & ethanol 
(30% ethanol, as wt.) 

Not 
Stated 

0.15 
Sodium 

Hydroxide (2.0) 
Room 

Not 
Stated 

95.4 60 

Coconut oil & ethanol 
(30% ethanol, as wt.) 

Not 
Stated 

0.36 
Sodium 

Hydroxide (2.0) 
Room 

Not 
Stated 

92.8 60 

Coconut oil & ethanol 
(30% ethanol, as wt.) 

Not 
Stated 0.66 

Sodium 
Hydroxide (2.0) 

Room 
Not 

Stated 
73.2 60 

Used frying oil 
Methanol (1:3.6) 

1.5 
Not 

Stated 
Potassium 

Hydroxide (0.4) 
50 24 Hour 73.8 43 

Used frying oil 
Methanol (1:3.6) 

1.5 
Not 

Stated 
Sulfuric Acid 

(0.1) 
-65 40 Hour 52.7 43 

Used frying oil 
Ethanol (1:3.6) 

1.5 
Not 

Stated 
Potassium 

Hydroxide (0.4) 
50 24 Hour 46.1 43 

Used frying oil 
Ethanol (1:3.6) 

1.5 
Not 

Stated 
Sulfuric Acid 

(0.1) 
-73 40 Hour 72.0 43 

Used frying oil 
l-propanol (1:3.5) 

1.5 
Not 

Stated 
Potassium 

Hydroxide (0.4) 
50 24 Hour 31.9 43 

Used frying oil 
l-propanol (1:3.5) 

1.5 
Not 

Stated 
Sulfuric Acid 

(0.1) 
-90 40 Hour 53.9 43 

Used frying oil 
2-propanol (1:3.5) 

1.5 
Not 

Stated 
Potassium 

Hydroxide (0.4) 
50 24 Hour 2.2 43 

Used frying oil 
2-propanol (1:3.5) 

1.5 
Not 

Stated 
Sulfuric Acid 

(0.1) 
-80 40 Hour 48.3 43 

Used frying oil 
1-butanol (1:3.6) 

1.5 
Not 

Stated 
Potassium 

Hydroxide (0.4) 
50 24 Hour 47.7 43 

Used frying oil 
1-butanol (1:3.6) 

1.5 
Not 

Stated 
Sulfuric Acid 

(0.1) 
-105 40 Hour 81.3 43 

Used frying oil 
2-exhoxyethanol ( 1:3.5) 

1.5 
Not 

Stated 
Potassium 

Hydroxide (0.4) 
50 24 Hour 29.4 43 

Used frying oil 
2-exhoxyethanol ( 1:3.5) 

1.5 
Not 

Stated 
Sulfuric Acid 

(0.1) 
-125 40 Hour 47.5 43 
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Table 2.2: continued 
Type of Oil and Alcohol 

(Molar Ratio) 
Amount of 
FFA (%) 

Amount of 
Water (%) 

Catalyst 
(%) 

Temp. 
CC) 

Reaction 
Time 

Conversion 
(%) 

Ref. 
No. 

Refined Peanut oil 
Methanol ( 1:6) 

Acid Value 
0.08 mg KOH/g 

Not 
Stated 

Sodium 
Methoxide 

Not 
Stated 

Not 
Stated 

95.0 44 

Crude Peanut oil 
Methanol (1:6) 

Acid Value 
6.66 mg KOH/g 

Not 
Stated 

Sodium 
Methoxide 

Not 
Stated 

Not 
Stated 

67.0 44 

Refined Soybean oil 
Methanol ( 1:6) 

Acid Value 
0.12 mg KOH/g 

Not 
Stated 

Sodium 
Methoxide 

Not 
Stated 

Not 
Stated 98.0 44 

Crude Soybean oil 
Methanol ( 1:6) 

Acid Value 
1.67 mg KOH/g 

Not 
Stated 

Sodium 
Methoxide 

Not 
Stated 

Not 
Stated 83.0 44 

Refined Cottonseed oil 
Methanol ( 1:6) 

Acid Value 
0.06 mg KOH/g 

Not 
Stated 

Sodium 
Methoxide 

Not 
Stated 

Not 
Stated 93.0 44 

Crude Cottonseed oil 
Methanol ( 1:6) 

Acid Value 
0.28 mg KOH/g 

Not 
Stated 

Sodium 
Methoxide 

Not 
Stated 

Not 
Stated 

84.0 44 

Refined Sunflower oil 
Methanol ( 1:6) 

Acid Value 
0.08 mg KOH/g 

Not 
Stated 

Sodium 
Methoxide 

Not 
Stated 

Not 
Stated 

97.0 44 

Crude Sunflower oil 
Methanol (1:6) 

Acid Value 
1.64 mg KOH/g 

Not 
Stated 

Sodium 
Methoxide 

Not 
Stated 

Not 
Stated 

81.0 44 

Palm oil & methanol 
(77% methanol as the weight 
of the oil) (2 Step Reaction) 

50.8 
Not 

Stated 
Sulfuric Acid 

(0.75%) 
69 & 50 1 + 1 Hours 

97.0 
(Still Contains 

5% Palmitic Acid) 
62 

Palm oil & ethanol 
( 1:4.5) (3 Step Reaction) 

5.2 7 
Sulfonic Acid 

(1.0%) 
130 & 90 2 + 0.5 Hours 

98.7 
63 

Palm oil & ethanol + 
methanol (in Step2) 

( 1:4.5) (3 Step Reaction) 
5.2 7 

Sulfonic Acid 
(1.0%) 

130 & 60 2 + 0.5 Hours 
99.0 

63 
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of ortho-phosphoric acid to get a low pH, which was done to prevent soap formation during 

water washing. After 2 more hours of agitation, the mixture was allowed to sit for 6 hours to 

facilitate the settling of glycerin and salts. The ethyl ester was washed at 80°C with an 

amount of water equal to 35% of the ester volume until a pH of around 6.5 was reached in 

the wash water. 

Hassett and Hasan [70] prepared methyl esters from sunflower oil in 9-liter batches. 

They mixed 9 liters of sunflower oil with 1456 grams of methanol to which 8.4 grams of 

metallic sodium had been added. The mixture was stirred for 2 hours at 62°C - 65°C. After 

the glycerin and ester separation, the methyl ester was washed with warm water to remove 

the suspended glycerin, unreacted methanol, and catalyst. The washed ester was dried with 

anhydrous sodium sulfate and then used as fuel grade sunflower oil methyl ester. After 

transesterification the FFA level was reduced from 1.46 to 0.2%. 

Nye and Southwell [71] investigated the pilot plant transesterification of crude 

rapeseed oil. A twenty-five liter batch reaction was conducted in an enclosed stainless steel 

cylindrical drum stirred by a 40-cm diameter propeller driven by a 1/3-hp electric motor. 

After dissolving 1% NaOH in 6 molar equivalents of dry methanol or ethanol, the crude 

rapeseed oil was added to the solution. The mixture was stirred with splashing for 1 hour at 

24°C. After extracting the ester, it was washed three times with a volume of water equal to 

half of the volume of oil, then dried over anhydrous CaCh and filtered to remove fine 

particles. The ester conversion was 92% and 95% for methyl and ethyl ester, respectively. 

Fuis et al. [36] used 1400 liters of sunflower oil to prepare ethyl esters. After 

dissolving 10.5 kg of sodium hydroxide in 600 liters of ethanol, the oil was added to the 

solution and reacted at 30°C for 4 hours. The mixture was allowed to settle so that the 
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glycerin could be drained off before heating was used to evaporate the excess alcohol. The 

hot ester was then gently washed 4 times with water (10% of total volume) at about 25°C, 

draining off the water after each wash. After cooling the ester to room temperature, it was 

centrifuged to get high quality ester and the specific gravity of the ester was 0.879 at 20°C. 

Peterson et al. [72] described a batch type transesterification process for winter rape 

oil. They designed a transesterification plant with a 200-gallon capacity, although, typically, 

160-gallon batches were produced. The components of the plant were: a 290 gallon cone 

bottom, cross-linked polyethylene tank, a centrifugal pump (20-25 gallon per minute 

capacity), a '/« hp mixer with 3.4:1 gear reduction (1725 rpm motor speed and 514 rpm rotor 

speed), and a 1 hp gear pump was used to transfer the raw vegetable oil and the finished ester 

to the storage tank. After methanol and KOH were mixed in a smaller (50-gallon) tank, the 

solution was transferred into the large tank. All of the reaction, settling, washing, and 

separating took place in this one large tank. After 4 to 6 hours of reaction time, the mixture 

was allowed to settle for 12 hours or more to allow the glycerin to settle to the bottom. Then 

the glycerin was drained from the bottom. In the washing process, water was sprinkled into 

the tank from a common lawn sprinkler at the approximate rate of 100 gal/hr. As the water 

droplets traveled through the ester they removed the KOH, methanol, and other impurities. 

After 20 to 30 hours of washing, the mixture was allowed to sit for 3 to 4 days. The water 

settled to the bottom and was visible as a white layer. At this time, the clean methyl ester was 

pumped into a storage tank. The ester conversion obtained was 98% and above. 

Mittelbach and Tritthart [67] prepared methyl esters of used frying oil to be used for 

engine tests after collecting about 200 kg of used frying oil from different households and 

restaurants. For the transesterification reaction, a 50-liter glass vessel equipped with a 
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mechanical stirrer was used. A solution of 450 g of potassium hydroxide in 8 liters of 

methanol was added to 40 kg of vegetable oil while stirring. After a 20-minute reaction 

period, the mixture slowly became clear and less viscous. It was allowed to settle for 5 hours 

to separate the glycerin and methyl ester. The ester was washed several times with 10 liters 

of water at 40°C until the pH of the aqueous layer was neutral. After separating the aqueous 

layer and the ester, the ester was dried with 4 kg of anhydrous sodium sulfate and filtered. 

Peterson et al. [68] produced 1000 liters of biodiesel from ethanol and waste 

hydrogenated soybean oil. They used 70% excess of the stoichiometric amount of ethanol. 

The total free fatty acids were determined and neutralized with the calculated addition of 

alkali catalyst. Based on the amount of input oil by weight, 1.3% of KOH was used plus the 

amount needed to neutralize the free fatty acids. The waste hydrogenated soybean oil was 

heated to 49°C. The oil was transferred into the biodiesel reactor and then the catalyst/alcohol 

mixture was pumped into the oil and the final mixture stirred vigorously for 2 hours. The 

ester and glycerin were separated after several hours of settling. Complete settling took as 

long as 20 hours. After settling was complete, wash water was added at the rate of 5.5% by 

volume of the oil and then stirred for 5 minutes and the glycerin was allowed to settle again. 

After settling was complete, the glycerin was drained and the ester layer remained. They 

washed the ester in a two step process. A wash water solution containing 1 gram of tannic 

acid per liter of water was added at the rate of 28% by volume of the oil and gently agitated. 

Air was carefully introduced into the aqueous layer while simultaneously stirring very gently. 

This process was continued until the ester layer became clear. The authors did not state 

whether there was any intended chemical function of the air introduced to the ester. It was 

apparently included to provide additional agitation. After settling, the aqueous solution was 
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drained and water alone was added at 28% by volume of oil for the final washing. In that 

study, the final product ester was found to be 92.26% esterified and contained 0.3% free 

glycerin and 0.99% total glycerin. This fuel exceeded the standards in the provisional ASTM 

specification of 0.02% free glycerin and 0.24% total glycerin. The concentration of 

monoglycerides were 1.49%, the diglycerides 4.23% and the triglycerides were 0.99%. The 

remaining amounts of alcohol and catalyst were 0.012% and 32 microgram/gram, 

respectively. 

Table 2.3 summarizes the different studies of pilot plant scale transesterification of 

vegetable oils. 

2.5. Waste Restaurant Grease and Animal Fat in the United States and Iowa 

Inedible oil from spoiled soybeans, waste oils and greases from restaurants and food 

service facilities, beef, pork, and chicken fat from packing plants are all possible sources of 

lower cost feedstocks for biodiesel. Waste oils and fats are currently collected from large 

food processing and service facilities where they are rendered and used almost exclusively in 

animal feed. 

The US Department of Energy's National Renewable Energy Laboratory (NREL) 

sponsored a study on urban waste grease resources in 30 randomly selected metropolitan 

areas in the United States [73]. This study showed that an average of 9 pounds/year/person of 

yellow grease and 13 pounds/year/person of trap grease were produced in 1998. Yellow 

grease is an agricultural commodity that is produced from rendered animal fats and 

restaurant waste oil and grease. It is required to have a free fatty acid (FFA) level of less than 

15%. If the FFA level exceeds 15%, it may be sold at a discount as brown grease, or blended 
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Table 2.3: Summary of the large scale transesterification processes 

Amount and 
Oil Type 

Amount and 
Alcohol Type 

Amount and 
Catalyst Type 

Reaction Washing 
Time 

Amount of 
Wash Water 

Wash Water 
Temp. 

(%) Ester 
Conversion 

Ref. 
No. 

Amount and 
Oil Type 

Amount and 
Alcohol Type 

Amount and 
Catalyst Type Temp. Time 

Washing 
Time 

Amount of 
Wash Water 

Wash Water 
Temp. 

(%) Ester 
Conversion 

Ref. 
No. 

1000 Liters 
Sunflower Oil 

500 Liters 
Ethanol 

7.5 kg 
Sodium Hydroxide 

25 °C Overnight 
Until pH of 

around 6.5 in 
Washing Water 

35% of the 
Ester Volume 

80°C Not 
Stated 

69 

9 Liters 
Sunflower Oil 

1456 grams 
Methanol 

8.4 g 
Sodium 

~65°C 2 Hours Not Slated Not Stated Warm 
Not 

Stated 
70 

25 Liters 
Rapeseed Oil 

6:1 Molar Ratio 
Methanol 

lwt% 
Sodium Hydroxide 
(Based on the Oil) 

24°C 1 Hour 3 Times 
'/i of the 

Ester Volume 
Not 

Slated 
92 71 

25 Liters 
Rapeseed Oil 

6:1 Molar Ratio 
Ethanol 

lwt% 
Sodium Hydroxide 
(Based on the Oil) 

24°C 1 Hour 3 Times 
'/i of the 

Ester Volume 
Not 

Stated 
95 

71 

1400 Liters 
Sunflower Oil 

600 Liters 
Ethanol 

10.5 kg Sodium 
Hydroxide 

30°C 4 Hours 4 Times 
10% of the 

Ester Volume 
25°C Not 

Stated 
36 

151 Liters Winter 
Rapeseed Oil 

34 Liters 
Methanol 

1.46 kg 
Potassium Hydroxide 

Room 
Temp. 

4-6 Hours 

Until the 
Level raises 
8 to 10 in. 

(in the Tank) 

100 gal/h 
(Sprinkled in 

the Tank) 

Not 
Staled 

£98 72 605 Liters Winter 
Rapeseed Oil 

136 Liters 
Methanol 

5.84 kg 
Potassium Hydroxide 

Room 
Temp. 

4-6 Hours 

Until the 
Level raises 
8 to 10 in. 

(in the Tank) 

100 gal/h 
(Sprinkled in 

the Tank) 

Not 
Staled 

£98 72 

756 Liters Winter 
Rapeseed Oil 

170 Liters 
Methanol 

7.30 kg 
Potassium Hydroxide 

Room 
Temp. 

4-6 Hours 

Until the 
Level raises 
8 to 10 in. 

(in the Tank) 

100 gal/h 
(Sprinkled in 

the Tank) 

Not 
Staled 

£98 72 

40 kg Used 
Frying Oil 

8 Liters 
Methanol 

450 g 
Potassium Hydroxide 

Room 
Temp. 

20 
Minutes 

Several Times 10 Liters 40°C Not 
Stated 

67 

Waste 
Hydrogenated 
Soybean Oil 

(at 49 °C) 

70% Excess 
Ethanol 

neutralization amount 
+ 1.3% 

Potassium Hydroxide 

Room 
Temp. 

2 Hours 2 Times 
28% of the 

Ester Volume 
Not 

Stated 
92.26 68 
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with low FFA material to meet the yellow grease specifications. The price of yellow grease 

varies widely from $0.09 - $0.20/lb [74]. Brown grease is usually discounted $0.01 - $0.03 

below this [75]. Trap grease is material that is collected in special traps in restaurants to 

prevent the grease from entering the sanitary sewer system where it could cause blockages. 

Trap grease is often cited as a potential feedstock for biodiesel because it currently has very 

low value. Many rendering plants will not process trap grease because it is usually 

contaminated with cleaning agents. These cleaning agents may not themselves be hazardous 

but they make detection of harmful substances more difficult. 

Table 2.4 shows quantitative data for yellow grease and trap grease from 30 

metropolitan areas in the United States. Although the cities ranged in size from 83,831 

(Bismarck, ND) to 3,923,574 (Washington, DC), no Iowa cities were included. These data 

show that the cities had an average of 1.4 restaurants per 1000 population and that 8.87 lbs. 

of yellow grease were produced per person per year. Although the range of the data were 

fairly wide, the NREL study also concluded that the volume of the waste restaurant grease 

produced correlated to general population as well as to the number of restaurants. 

The Waste Management Assistance Division of the Iowa Department of Natural 

Resources published an executive summary about rendering operations in the State of Iowa 

in December 1996 [76]. This report was the result of a rendering facility survey. Table 2.5 

shows the amount of material processed by rendering plants in Iowa. The estimate of 13,799 

tons/year of used restaurant grease is actually quite close to the estimate developed from the 

NREL study. If each of Iowa's 2.8 million population generates 8.87 pounds/year of 

restaurant grease, this equals 11,350 tons/year. 

In Iowa, the majority of the yellow grease produced by some rendering plants 
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Table 2.4: Urban waste grease resources in 30 metropolitan areas |73] 

No. Metro Area State Population 
Urban Waste Grease Resources (Pounds/Year) 

Urban Waste Grease Resources 
(Pounds/Year/Person) 

No. Metro Area State Population 
No. of Yellow Trap Total Restaurant Yellow Trap Total 

Restaurants Grease Grease Grease /1000P Grease Grease Grease 
1 Sacramento CA 1,481,102 2,200 4,500,000 16,600,000 21,100,000 1.49 3.04 11.21 14.25 
2 Olympia WA 161,238 240 1,080,000 1,200,000 2,280,000 1.49 6.70 7.44 14.14 
3 Provo UT 263,590 400 4,380,000 7,000,000 11,380,000 1.52 16.62 26.56 43.17 
4 Denver CO 1,848,319 2,670 17,000,000 15,900,000 32,900,000 1.44 9.20 8.60 17.80 
5 Lincoln NE 213,641 350 4,500,000 2,600,000 21,600,000* 1.64 21.06 12.17 101.10** 
6 Bismarck ND 83,831 133 430,000 400,000 830,000 1.59 5.13 4.77 9.90 
7 Bloomington IL 129,180 200 500,000 2,300,000 2,800,000 1.55 3.87 17.80 21.68 
8 Battle Creek MI 135,982 211 1,500,000 1,500,000 3,000,000 1.55 11.03 11.03 22.06 
9 Mansfield OH 126,137 244 650,000 190,000 840,000 1.93 5.15 1.51 6.66 
10 Elmira NY 95,195 140 950,000 1,500,000 2,450,000 1.47 9.98 15.76 25.74 
11 Boston MA 1,950,855 3,000 10,400,000 33,600,000 44,000,000 1.54 5.33 17.22 22.55 
12 Harrisburg PA 587,986 900 6,000,000 10,800,000 16,800,000 1.53 10.20 18.37 28.57 
13 Altoona PA 130,542 143 1,300,000 1,000,000 2,300,000 1.10 9.96 7.66 17.62 

14 Hagerstown MD 121,393 170 1,200,000 1,000,000 2,200,000 1.40 9.89 8.24 18.12 

15 Washington DC 3,923,574 5,000 39,000,000 50,000,000 89,000,000 1.27 9.94 12.74 22.68 

16 Richmond VA 865,640 1,480 8,700,000 17,300,000 26,000,000 1.71 10.05 19.99 30.04 

17 Danville VA 108,711 157 1,100,000 1,900,000 3,000,000 1.44 10.12 17.48 27.60 

18 Fayetteville NC 274,566 384 2,700,000 2,100,000 4,800,000 1.40 9.83 7.65 17.48 

19 Florence se 114,344 185 1,100,000 900,000 2,000,000 1.62 9.62 7.87 17.49 

20 Greenville se 640,861 1,017 6,400,000 4,600,000 11,000,000 1.59 9.99 7.18 17.16 

21 Lexington KY 348,428 562 3,500,000 3,600,000 7,100,000 1.61 10.05 10.33 20.38 

22 Memphis TN 981,747 1,128 9,800,000 18,500,000 28,300,000 1.15 9.98 18.84 28.83 

23 Decatur AL 131,556 245 1,300,000 2,400,000 3,700,000 1.86 9.88 18.24 28.12 

24 Macon GA 281,103 348 2,800,000 5,900,000 8,700,000 1.24 9.96 20.99 30.95 
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Table 2.4: continued 

No. Metro Area State Population 
Urban Waste Grease Resources (Pounds/Year) 

Urban Waste Grease Resources 
(Pounds/Year/Person) 

No. Metro Area State Population 
No. of 

Restaurants 
Yellow 
Grease 

Trap 
Grease 

Total 
Grease 

Restaurant 
/1000P 

Yellow 
Grease 

Trap 
Grease 

Total 
Grease 

25 Lakeland FL 405,382 445 4,100,000 4,600,000 8,700,000 1.10 10.11 11.35 21.46 
26 Bradenton FL 211,707 360 2,100,000 3,000,000 5,100,000 1.70 9.92 14.17 24.09 
27 Baton Rouge LA 528,264 657 5,300,000 5,800,000 11,100,000 1.24 10.03 10.98 21.01 
28 Shreveport LA 334,341 442 3,300,000 4,700,000 8,000,000 1.32 9.87 14.06 23.93 
29 Beaumont TX 361,226 383 3,600,000 3,900,000 7,500,000 1.06 9.97 10.80 20.76 
30 Bryan TX 121,862 198 1,200,000 2,000,000 3,200,000 1.62 9.85 16.41 26.26 

Weighted A verage 1.41 8.87 13.37 23.09 
•Lincoln total includes 14,500,000 pounds/year of food plant waste grease. 
**Lincoln total includes 67.87 pounds/year/person of food plant waste grease. 

W On 
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originates from animal carcasses with more than 10 times the volume of used restaurant 

grease. In states with less livestock production and numerous large urban centers, the ratio 

may be reversed. Table 2.6 shows the volume of rendered product sold in Iowa. The 

animal/livestock feed is mostly meat and bone meal which is the solid by-product of the 

rendering of animal carcasses. Although the DNR report did not identify it as such, the tallow 

shown is probably edible tallow that is produced by rendering by-product fat in meat packing 

plants. The grease shown is yellow and brown grease and would be the candidate feedstock 

for biodiesel. While edible tallow could be used for biodiesel, its value as a food ingredient 

makes it more expensive than grease. 

Since one pound of most fats and oils can be converted to a pound of biodiesel, if all 

of the 23,586 tons/year of grease were converted to biodiesel, it would produce about 47 

million pounds of biodiesel which would displace about 6 million gallons of diesel fuel. 

2.6. Chemical Analysis of Unprocessed Restaurant Grease and Animal Fat 

Very few data are available in the literature for the actual composition of the 

feedstocks to rendering plants. As part of this study samples of rendering plant feedstocks 

and final products were collected and analyzed to define the range of properties that should 

be expected for a pilot plant operating on high FF A feedstock. Table 2.7 shows the detailed 

chemical analysis of samples of rendering plant feedstocks and final products collected from 

Simonsen Rendering Co. in Quimby, Iowa. Simonsen receives both restaurant grease and 

animal carcasses but processes these two streams separately before blending them together as 

a final product. The samples identified as SIM-01, SIM-05, SIM-09, SIM-10, and SIM-11 are 

restaurant grease as received by the rendering plant. The moisture level of these samples 
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Table 2.5: The amount of rendered waste in Iowa in 1996 [76] 

Waste Type Amount (tons/year) Respondent % 
Animal Carcasses 157,480 71 
Offal 179,398 71 
Fat/Bone 143,624 57 
Fish Waste 305 29 
Food Waste 15 14 
Used Restaurant Grease 13,799 57 
Blood 43,206 29 
Feathers 14,651 14 
Total Material Rendered 552,478 

Table 2.6: Rendering plant product [76] 

Bulk 
Responding 

Number 
Total 
(tons) 

Price Range 
(per pound) 

Average 
Price 

Animal/Livestock Feed 5 (71%) 132,046 $0.09-$0.14 $0.12 
Tallow 4 (57%) 79,120 $0.10-$0.20 $0.17 
Grease 6 (86%) 23,586 $0.07 - $0.20 $0.16 
Blood 1 (14%) 5,823 $0.20 $0.20 

Hydrolyzed Feather Meal 1 (14%) 3,582 $0.125 $0.125 

varies widely with one being as high as 18%. The free fatty acid levels also varied from 0.7% 

to 41.8%. These data indicate that a process to convert waste restaurant grease to biodiesel 

must be very robust, and capable of tolerating a wide range of feedstock properties. 

The other data shown in Table 2.7 show the properties for a variety of finished 

greases. These products generally have less than 2% MIU (moisture, insolubles, and 

unsaponifiables). The FF A levels of these finished greases varies from about 8.8 to 25.5. 

Figure 2.3 from another source in the rendering industry shows the variation in FFA 

level of animal fat over a typical year. From May to October, the FFA level exceeds 15% so 

it must be blended with fat from other sources to meet the yellow grease specification. These 

high FFA levels are associated with the rapid degradation of animal carcasses during hot 

weather. 
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Table 2.7: Chemical Analysis Results of Reastaurant Grease and Animal Fat Samples 

TEST/SAMPLE 
Refined Refined FG- SIM- SIM SIM- SIM- SIM- SIM- SIM- SIM- S1M- SIM- SIM-

TEST/SAMPLE Soybean 
Oil 1 

Soybean 
Oil 2 

l/A 01 02 03 04 05 07 08 09 10 11 24 

M 1 U (%) 0.44 0.41 1.61 24.11 0.74 2.85 3.54 0.98 6.42 58.14 1.71 1.06 1.97 2.37 
Moisture & Volatiles by Hot Plate 0.01 <0.10 0.20 18.06 0.31 0.11 3.11 0.35 0.26 55.38 1.26 0.65 1.42 0.35 
Insoluble Impurities (%) <0.10 <0.10 0.36 1.22 <0.10 0.11 0.09 0.11 3.83 2.51 0.03 0.03 0.08 1.03 
Unsaponifiable Matter (%) 0.43 0.41 1.05 4.83 0.43 2.63 0.34 0.52 2.33 0.25 0.42 0.38 0.47 0.99 
Peroxide Value (meq/kg) 66 7.3 0.4 0.8 40 <0.2 3.7 3.4 <0.2 0.6 4.6 3.1 1.7 1.0 
F. F. A. (%) 0.02 0.01 8.8 41.8 9.7 25.7 2.6 1.1 25.5 14.8 0.7 1.3 0.7 10 5 

FATTY ACID PROFILE (%) 
C08:0 Octanoic (Caprylic) <0.10 <0.10 <0.10 0.21 <0.10 <0.10 <0.10 <0.10 <0 10 <0.10 <0.10 <0.10 <0.10 <0.10 
C|0:0 Decanoic (Capric j <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 
Cl 1:0 Undecanoic (Uendecanoic) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0 10 <0.10 <0.10 <0.10 <0.10 <0.10 
CI2:0 Dodecanoic (Laurie) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0 10 <0 10 <0.10 <0.10 <0.10 <0.10 
CI3:0Tridecanoic <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0 10 <0.10 <0.10 <0.10 <0.10 
CI 4:0 Tetradecanoic (Mynslic) <0.10 <0.10 1.73 2.79 0.45 1.52 0.59 0.19 1.56 0.43 0.20 0.49 0.18 1.45 
C14:l Tetradecenoic (Myristoleic) <0.10 <0.10 0.16 0.63 <0.10 0.15 0.11 <0.10 0.17 <0.10 <0.10 <0.10 <0.10 0 13 
C15:0 Pentadecanoic <0.10 <0 10 0.23 0.43 <0.10 0 15 <0.10 <0.10 0.17 <0.10 <0.10 <0.10 <0.10 0.18 
CI 5:1 Pentadecenoic <0.10 <0.10 <0.10 0.18 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

CI 6:0 Hexadecanoic (Palmitic) 10.29 10.40 21.75 25.92 12.84 22.39 13.44 11.49 22.46 12.74 10.92 13.67 1091 20.51 
CI 6:1 Hexadecenoic (Palmiioleic) <0.10 <0.10 4.45 3.79 1.12 3.14 1.24 0.64 3.06 0.88 0.44 0.95 0.28 3.58 

CI6:2 Hexadecadienoic <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0 10 

CI6:3 Hexadecatrienoic <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

CI6:4 Hexadecatetraenoic <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

CI 7:0 Hepladecanoic (Margaric) 0.11 <0.10 0.56 1.09 0.22 0.53 0.28 0.13 0.57 0.24 0.14 0.22 0.14 0.49 

CI7:1 Heptadecenoic Margaroleic <0.10 <0.10 0.44 0.71 0.15 0.39 0.19 <0.10 0.41 0.14 <0.10 0.16 <0.10 0.39 

CI8:0 Octadecanoic (Stearic) 4.28 4.51 12.05 16.49 7.18 12.81 7.59 5.69 13.33 8 22 5.05 7.45 6.61 11.43 

CI 8:1 Octadecenoic (Oleic) 21.55 24.37 40.61 39.54 43.49 42.53 42.11 29.37 42.74 41.52 33.47 37.70 37.22 41.87 

CI8:2 Octadecadienoic (Linolcic) 53.68 51.90 11.03 4.40 29.47 12.07 29.33 44.77 10.89 30.86 42.64 33.48 38.33 13.98 

C18:3 OcUdccatricnoic (Linolcnic) 8.16 6.52 1.38 0.57 2.66 0.81 2.86 5.38 0.67 2.96 4.90 3.58 4.22 1.41 

C18:4 Octadecatetraenoic <0.10 <0.10 0.32 0.25 0.30 0.10 0.27 <0.10 0.12 0.20 0.21 0.19 0.23 0.25 

C20.0 Eicosanoic (Atachidic) 0.34 0.37 0.19 0.18 0.32 0.20 0.33 0.35 0 21 0.34 0.35 0.33 0.37 0.22 

C20:l Eicosenoic (Gadoleic) 0.19 0.28 1.13 0.66 0.57 1.01 0.53 0.39 1.04 0.46 0.45 0.46 0.45 1.06 

C20:2 Eicosadienoic <0.10 <0.10 0.49 <0.10 <0.10 0.50 <0.10 <0.10 0.44 <0.10 <0.10 <0.10 <0.10 0.41 

C20:3 Eicosatrienoic <0.10 <0.10 0.24 <0.10 <0.10 0.19 <0.10 <0.10 0.19 <0.10 <0.10 <0.10 <0.10 0.20 

C20:4 Eicosatetraenoic (Arachidonic) <0.10 <0.10 0.65 <0 10 <0.10 0.43 <0.10 <0.10 0.41 <0.10 <0.10 <0.10 <0.10 0.54 

C20:5 Eicosapenlaenoic <0.10 <0.10 0.55 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 0.35 

C21:5 Hcncicosapcnlacnoic <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

C22:0 Docosanoic (Bchenic) 0.37 0.39 <0.10 <0.10 0.33 <0.10 0.33 0.35 <0.10 0.34 0.37 0.30 0.36 <0.10 

C22:l Docoscnoic (Erucic) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0 10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 
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Table 2.7: continued 

TEST/SAMPLE 
Refined 
Soybean 

Oil 1 

Refined 
Soybean 

Oil 2 

FG-
1/A 

SIM-
01 

SIM-
02 

SIM-
03 

SIM-
04 

SIM-
05 

SIM-
07 

SIM-
08 

SIM-
09 

S1M-
10 

SIM-
11 

SIM-
24 

C22:2 Docosadicnoic <0.10 <0.10 <0 10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

C22:3 Docosatrienoic <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 
C22:4 Docosatetraenoic <0.10 <0.10 0.19 <0.10 <0.10 0.19 <0.10 <0.10 0.18 <0.10 <0.10 <0.10 <0.10 0.17 
C22:5 Docosapcnlaenoic <0.10 <0.10 0.25 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 0.20 
C22.6 Docosahexaenoic <0.10 <0.10 0.21 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 0.16 
C24.0 Tetracosanoic (Lignoccric) 0.12 0.13 <0.10 <0 10 <0.10 <0.10 0.10 on <0.10 <0.10 0.12 <0.10 0.12 <0.10 
C24:l Tctracoscnoic (Nervonic) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 
Unknown Components (%) 0.91 1.13 1.39 2.16 0 90 0.89 0.70 1.14 1.38 0.67 0.74 1.02 0.58 1.02 

The notations about the restaurant grease and animal fats 
are following. 

S1M-01 Unprocessed restaurant grease. As delivered. Collected from the 
tops of 3 separate barrels. Water mostly at the bottoms of the 
barrel. Collected 9/28/1998. 

SIM-02 Restaurant grease. Boiled and settled. This is the final product 
before mixing with animal fat. 
Collected 9/24/1998. 

SIM-03 Animal fat. This was the final product for their animal fat but 
before it is mixed with any restaurant grease. 
Collected 9/23/1998. 

SIM-04 Processed restaurant grease. Collected 12/29/1998. 

SIM-05 Restaurant grease. Skimmed from top of barrel. Collected 
2/21/1999. 

S1M-07 Mixed fat from storage tank. This is the final product as sold. 
Collected 9/25/1998. 

SIM-08 Restaurant grease, partially processed. This material had been 
through the first stage of processing, where the solids and free 
water are removed but it had not been cooked. 
Collected 10/1/1998. 

SIM-09 Restaurant grease. Skimmed from top of barrel. 
Collected 12/24/1998. 

SIM-10 Restaurant grease. Skimmed from top of barrel. 
Collected 2/22/1999. 

SIM-11 Restaurant grease. Skimmed from top of barrel. 
Collected 2/20/1999. 

SIM-24 Finished grease, with some restaurant grease. 
No collection date given. 

FG-1A 5 gallon bucket of straight animal fat, approximately 10% FFA. 
Collected 2/24/1998. 
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Figures 2.4 and 2.5 are from the same source as Figure 2.3. They show that the fatty 

acid profile of the animal fat and its iodine value do not vary much during the year. The 

iodine value is a measure of the level of saturation of the fat. 

2.7. Diesel Engine Emissions Fueled with Vegetable Oil Esters 

Vegetable oil esters are receiving increasing attention as an alternative, non-toxic, 

biodegradable and renewable diesel fuel. Many studies have shown that the properties of 

biodiesel are very close to diesel fuel. Therefore, biodiesel fuel can be used for diesel engines 

with little or no modification. Biodiesel has a higher cetane number than diesel fuel, no 

aromatics, no sulfur, and contains 10 to 11% oxygen by weight. These characteristics of 

biodiesel reduce the emissions of carbon monoxide (CO), hydrocarbon (HC), and particulate 

matter (PM) in the exhaust gas compared to diesel fuel. This section will review a portion of 

the studies in the literature on biodiesel performance, combustion, and emissions. 

Schmidt and Van Gerpen [18] used a four cylinder, turbocharged, direct injection 

diesel engine to investigate biodiesel ̂ s emission reduction effect and the effect of blends of 

esters (20% and 50% blends in No. 2 diesel fuel) with diesel fuel on engine performance and 

emission. The engine was fueled with different esters (methyl soyate derived from soybean 

oil, methyl palmitate, methyl stearate, methyl oleate derived from a commercial grade of 

oleic acid, isopropyl palmitate, isopropyl stearate, methyl ester of safflower oil, and methyl 

ester of linseed oil) and blends of these esters at 20% and 50% in No. 2 diesel fuel. 

Particulate emissions were significantly reduced when the engine was fueled with the 

blends of methyl palmitate. The 50% blend of methyl palmitate gave the largest particulate 

reduction of 30%. They reported that the HC emissions decreased as the percent ester 
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Figure 2.5: The change in the iodine value of the animal fat during a year 

increased for all of the esters. The most significant reduction in HC emissions, about 30%, 

was reported for methyl stearate and methyl palmitate esters. The NO, emissions did not 

change significantly for any of the esters. They noted that CO emissions reduction was not 

significant but that methyl stearate and methyl palmitate appeared to reduce CO the most 

when they were blended with diesel fuel. The BSFC of the esters increased as the amount of 

ester in the fuel increased, due to the lower energy content of the biodiesel fuels. 

Scholl and Sorenson [3] investigated the combustion of soybean oil methyl ester in a 

direct injection diesel engine and compared it to that of diesel fuel. They found that the 

soybean oil methyl ester behaved comparably to diesel fuel in terms of performance and rate 

of heat release. They noted that NOx emissions were strongly related to the cylinder pressure. 

They also tested the fuels using two different injection nozzle orifice diameters. Changing the 
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injector orifice diameter had less effect on engine performance when using diesel fuel than 

with methyl ester fuel. A smaller orifice diameter gave higher cylinder pressure and 

maximum rate of pressure increase, higher NO* emissions, and a larger amount of premixed 

burning for both fuels. The CO emissions from the soybean oil methyl ester were slightly 

lower than those from the diesel fuel. At optimum operating conditions, lower HC emissions 

and smoke number were found for the methyl ester. The HC emissions from the methyl ester 

were about one half of those from the diesel fuel. The Bosch smoke numbers for the soybean 

oil methyl ester were also lower than for the diesel fuel. 

Alfuso et al. [77] fueled a direct injection, turbocharged diesel engine with the methyl 

ester of rapeseed oil to investigate its effect on exhaust emissions. They found that, at the 

same injection timing, the methyl ester caused an increase in NOx emissions, a decrease in 

HC and CO emissions, as well as a strong reduction of smoke. The particulate matter 

produced by the methyl ester in transient cycles was higher than that obtained with diesel 

fuel. They reported that NOx, HC, and CO emissions of biodiesel may be reduced by the 

adoption of EGR in the presence of an exhaust oxidation catalyst. 

Monyem [78] investigated the effect of biodiesel oxidation on engine performance 

and emissions. Monyem prepared oxidized biodiesel by bubbling pure Oz into biodiesel at 

60°C until the peroxide value of the biodiesel reached 340 meq On/kg. The engine 

performance of both the oxidized and unoxidized biodiesel were similar to that of No. 2 

diesel fuel with nearly the same thermal efficiency but with higher fuel consumption 

reflecting the lower energy content of the biodiesel fuels. The CO and HC emissions and 

smoke number were found to be between 14% and 16% lower compared to unoxidized 

biodiesel. There was no statistically significant difference in the NOx emissions for oxidized 
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and unoxidized biodiesel. 

Chang et al. [20] tested a four-cylinder turbocharged diesel engine fueled with blends 

of methyl and isopropyl esters of soybean oil in No. 2 diesel fuel to determine the engine's 

performance and emissions. They tested fuel blends which were 20, 50, and 70% soybean oil 

methyl ester and 20 and 50% soybean oil isopropyl ester. Their results showed that engine 

performance for all of the fuel blends was similar to No. 2 diesel fuel. They reported that all 

blends of methyl and isopropyl esters of soybean oil with No. 2 diesel fuel produced lower 

emissions of CO and unbumed HC than the diesel fuel itself. Particulate and solid carbon 

emissions were significantly reduced when the engine was fueled with blends of methyl and 

isopropyl esters. A 50% blend of the isopropyl ester with low sulfur No. 2 diesel fuel gave 

the greatest reduction in particulate and solid carbon emissions. However, the soluble organic 

fraction for the particulates increased with increasing percentage of esters in the fuel blends 

and this caused increases in the particulate matter at light engine loads. The 70% methyl ester 

blend with high sulfur No. 2 diesel fuel gave the highest increase in particulate emissions of 

53%. The NO% emissions of all the ester blends were higher than that of No. 2 diesel fuel. 

The maximum increase was found to be 12% for the 50% isopropyl esters blended with low 

sulfur No. 2 diesel fuel. The 50 and 70% methyl ester blends showed 3 and 8% increases in 

NO%, respectively, compared to No. 2 diesel fuel. 

Isigigur et al. [79] performed some tests on a four-cylinder, direct-injection engine 

using safflower seed oil methyl ester and No. 2 diesel fuel to investigate engine performance 

and exhaust emissions. In that study, the engine performance of the methyl ester was similar 

to No. 2 diesel fuel. Lower CO and HC emissions were obtained and a significant decrease 

was observed in the particulate emissions when the engine was fueled with the methyl ester. 
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A slight decrease was observed in brake power, brake torque, and brake mean effective 

pressure values of the engine fueled with methyl ester as compared to No. 2 diesel fuel. 

They reported that the brake specific fuel consumption and brake thermal efficiency of the 

engine were slightly higher when the ester was used. 

Last et al. [80] measured the emissions from a diesel engine fueled with different 

blends of soybean oil methyl ester with low sulfur diesel fuel. They noted that at the standard 

injection timing, emission reductions of HC, CO, and particulate were possible compared to 

100% diesel fuel. The NOx emission increased linearly with the methyl ester fraction. Fuel 

consumption increased over the full load range, as the fraction of soybean methyl ester 

became larger. However, depending upon the particular engine calibration and blend ratio, 

fuel consumption similar to the diesel-fueled engine was possible when measured on a mass 

basis. 

Graboski et al. [81] investigated the effect of blends of soybean oil methyl ester with 

diesel fuel on engine emissions from a Detroit Diesel Series 60 engine. The fuels were 

reference diesel fuel, 20, 35, and 65% biodiesel blended with the base diesel fuel and 100% 

methyl ester. Their results showed that as the percent biodiesel increased, the NO* emission 

increased, while HC, CO, and PM decreased. For a 35% biodiesel blend, the NO* emission 

increased by only 1% while the particulate emission decreased by 26% relative to the 

reference diesel fuel. For 100% biodiesel, the NOx emission increased by 11% while the PM 

decreased by 66%. The CO and HC emissions were reduced by 47% and 44%, respectively. 

Most researchers have observed that vegetable oil esters and their blends with diesel 

fuel reduce CO, HC, smoke, and particulate emissions. However, they usually cause a slight 

increase in NOx emissions relative to No. 2 diesel fuel. The magnitudes of the emission 
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changes appear to be engine dependent. The engine performance of these fuels is also 

comparable to diesel fuel. 

2.8. Diesel Engine Emissions Fueled with Restaurant Waste Oils 

This section reviews previous research on using restaurant waste oils as fuels for 

diesel engines. Engelman et al. [51] investigated using waste soybean oil obtained from Ohio 

State University cafeteria deep fat fryers directly in a 6-cylinder, turbocharged diesel engine. 

The authors did not indicate whether the engine had direct fuel injection or not. The waste oil 

was filtered twice to remove food particles and then heated to about 120°C to 140°C to drive 

out any water entrained in the oil before use in the diesel engine at 100% waste oil and 10%, 

20%, 30%, 40%, and 50% blends with No. 1 diesel and No. 2 diesel. The fuel consumption 

was lowest with the 20% blend for the higher RPM ranges at full load. At lower RPM, the 

fuel consumption decreased with increasing waste oil in the blend. Since this result was 

unexpected, the authors concluded that further investigation was needed. The lowest smoke 

readings at all speeds were obtained with a 20% waste oil blend. They observed some carbon 

deposits on the fuel injectors after almost 50 hours of testing but noted that the deposits were 

not hard deposits. They concluded that waste soybean oil could be used as a diesel fuel 

extender. The waste soybean oil could be used at different blends with diesel fuel for short 

periods without engine modifications. 

Lague et al. [52] tested 20% and 50% blends of used deep fat frying vegetable oil 

with diesel fuel and compared its performance with No. 2 diesel fuel after 200 hours of 

engine operation by using a small indirect-injection (swirl-chamber) diesel engine. Before 

testing they heated the cloudy blends above 30°C to avoid fuel filter clogging and filtered 



www.manaraa.com

48 

them to remove any food particles. They found that the thermal efficiencies were not 

significantly different for any of the fuels tested at the same operating conditions. The 

average brake specific fuel consumption (BSFC) showed that a 20% blend allowed an 18% 

savings in diesel fuel and a 50% blend allowed only a 47% diesel fuel savings because the 

waste vegetable oil heat content (39500 kJ/kg) was lower than for the diesel fuel. In this 

study, the fuel blends did not cause more deposits than diesel fuel and no piston ring sticking 

was observed. The deposits were darker as the percentage of waste oil in the blend increased 

but were not harder to remove. Combustion efficiency did not drop during testing for all the 

fuels tested. Their results showed that deep frying vegetable oil at 20% and 50% blends gave 

no fuel-related problems. They concluded that it could be used for long-term use in diesel 

engines. 

Kouremenos et al. [53] studied waste olive oil to determine the effects of waste olive 

oil/diesel fuel blends on engine performance and emissions. A single cylinder, four stroke, 

naturally aspirated, indirect-injection (divided chamber) diesel engine was used in that study. 

They tested 0, 25, 50, and 100% waste olive oil with diesel fuel under varying load 

conditions. The waste oil's heating value and specific gravity were 37000 kJ/kg and 0.93, 

respectively. It was observed that the fuel consumption increased when using the blends. The 

CO and HC emissions increased but a small decrease was observed in NOx when using the 

blends. 

Karaosmanoglu et al. [54] prepared 10-90% blends (by volume) of filtered, used 

canola oil and No. 2 diesel fuel to compare engine performance and exhaust emissions with 

baseline No. 2 diesel fuel. The engine tests were conducted at different speeds at full load 

and half load conditions by using a Hercules D-2000 NA/DI model, naturally aspirated, 
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direct injection, four cylinder, marine type diesel engine. They reported that, in general, the 

20% blend displayed engine performance characteristics that were very similar to diesel fuel 

and some improvements were observed in exhaust emissions. The blends had no significant 

effect on carbon deposit formation on the injector nozzles for the short-term engine run. 

Cigizoglu et al. [55] used a Daimler Benz OM horizontal, six cylinder, indirect 

injection (precombustion chamber) diesel engine to investigate the effect of a 20% blend of 

used sunflower oil with No. 2 diesel fuel on full load engine performance and emissions at 

several speed levels. At high speeds and full load, the fuel consumption of the blend was 

found to be close to that of diesel fuel. Significant decreases were observed in smoke levels 

when using the blend. The power produced at different speed levels did not show a difference 

for either diesel fuel or the blend at full load. 

The research described above has focused on the use of raw waste or used oils as a 

diesel fuel extender. Most of the engines used in these studies were indirect injection type 

diesel engines and they are generally more tolerant of changes in fuel viscosity. However, 

since most modem diesel engines are direct injection type engines, a fuel viscosity closer to 

diesel fuel is needed. Therefore, most researchers have focused on transesterification of the 

waste vegetable oils and their use in diesel engines. The following section discusses previous 

research in this area. 

2.9. Diesel Engine Emissions Fueled with Waste Vegetable Oil Esters 

Transesterified waste oils are still considered to be biodiesel. There is some 

experience with these fuels, as will be described below, but generally the feedstocks had 

fairly low free fatty acid levels. Mittelbach et al. [25] prepared methyl esters from used 
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frying oil and compared their fuel properties to Austrian standards valid for rapeseed oil 

methyl ester. The amount of free fatty acids in the oils was between 0.26 to 2.12%. After 

filtration at 40°C to remove solid particles, the oil was transesterified using alkaline catalysis. 

They noted that all specification values could be met by the used vegetable oil esters except 

the cold filter plugging point, which in most cases was over -8°C. 

Isigigur et al. [66] prepared 0, 10, and 20% blends (by volume) of methyl ester of 

used frying oil with No. 2 diesel fuel to compare their fuel properties. They found that the 

heating value and cetane number were a little lower than for No. 2 diesel fuel. The fuel 

properties of the 10 and 20% blends of the ester with diesel fuel were within the range of 

those for pure No. 2 diesel fuel. 

Mittelbach and Tritthart [67] prepared methyl esters from used frying oil to 

investigate the effects of the ester on diesel engine exhaust emissions. They measured 

slightly lower HC, CO, and particulate emissions but increased NOx values when the ester 

fuel was used. They found higher fuel consumption for the ester compared with No. 2 diesel 

fuel due to its lower calorific value. 

Nye et al. [43] investigated the esters of used frying oil to determine their effects on 

engine performance and emissions. The esters of methanol, ethanol, 1-propanol, 2-propanol, 

1-butanol, and 2-ethoxyethanol were prepared using sulfuric acid and potassium hydroxide as 

acid and base catalysts, respectively. They found that all of the acid-catalyzed fuels had low 

viscosities, and all of the base-catalyzed fuels had higher viscosities, except for the methanol-

based fuel, which was the least viscous of all the fuels. The authors noted that the viscosity 

measurements of the esters correlated with the percentage of ester yield. In that study, the 

three fuels with the lowest viscosity, methyl ester prepared with base catalyst, ethyl ester 
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prepared with acid catalyst, and butyl ester prepared with acid catalyst, were tested in half-

hour runs in a MWM high-speed diesel engine, and no problems were observed with regard 

to starting at 25°C, smoothness of running, or smokiness of exhaust. They also tested the 

methyl and ethyl esters in a Perkins P6 low speed diesel engine and no problems were 

observed in that engine, either. 

Peterson et al. [68] conducted engine testing to compare the engine performance and 

emissions of ethyl esters produced from waste hydrogenated soybean oil and No. 2 diesel 

fuel. In this study, two types of engine were used. For the engine performance tests, a direct 

injected, four cylinder John Deere 4239T-turbocharged diesel engine was used. For the 

emissions testing, a 1994 Dodge pickup equipped with a direct injected, turbocharged and 

intercooled, 5.9 L Cummins diesel engine was used. The ester fuel had a higher specific 

gravity and 1.9 times the viscosity of No. 2 diesel fuel at 40°C. The heat of combustion and 

sulfur content for biodiesel from waste hydrogenated soybean oil were 12% and 36% lower 

than for diesel fuel, respectively. The smoke opacity was 71% lower and the engine power 

was 4.8% lower when the engine was operated with biodiesel compared with diesel fuel. The 

peak engine torque was reduced by 6% and 3.2% at 1700 and 1300 rpm, respectively. The 

fuel consumption for the biodiesel fuel was 7% higher than that of No. 2 diesel fuel. There 

was no significant difference in the thermal efficiencies. Emissions tests showed a 54% 

decrease in HC, a 46% decrease in CO, a 14.7% decrease in NOx, a 0.57% increase in CO%, 

and a 14% increase in PM when biodiesel was used. 

Reed et al. [82] converted waste cooking oils to methyl and ethyl esters for use as an 

alternative oxygenated diesel fuel substitute. Thirty and 100% blends of ester were tested in a 

diesel-powered bus on a chassis dynamometer to compare with diesel fuel. No significant 
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difference in power and performance were observed except for the visible reduction of 

smoke on acceleration with the esters of the used oil. They also tested smoke opacity on 

diesel fuel, 100% ester, and a 30% blend of ester in diesel fuel, and found that the smoke was 

reduced to 60% of the diesel value by the 30% blend and to 26% of the diesel value by the 

pure ester. 

In general, almost all of the fuel properties of the biodiesel produced from waste 

vegetable oil could be brought within the specifications for biodiesel produced from virgin 

vegetable oil. As with biodiesel from virgin vegetable oils, biodiesel from waste oils causes a 

significant reduction in CO and PM emissions from diesel engines. With one exception, it 

also caused the NOx emissions to increase. The fuel consumption for the esters is higher 

compared with No. 2 diesel fuel due to its lower calorific value. There is no significant 

difference in the thermal efficiency and the engine performance compared to No. 2 diesel 

fuel. 
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3. EXPERIMENTAL METHODS AND APPARATUS 

The main objective of this study was to produce biodiesel from high FFA feedstock 

and to study the impact of the biodiesel on exhaust emissions and engine performance and to 

compare to No. 2 diesel fuel and soybean oil methyl ester. In this chapter, the equipment that 

was used to accomplish the objectives will be discussed. The first section describes the 

equipment used for the laboratory-scale biodiesel production. The second section describes 

the engine setup and test schedule. In the last section, the data acquisition system and 

emission measurement equipment are presented. 

3.1. Test System Setup for Small Scale Biodiesel Production 

To understand the effects of molar ratio, reaction temperature, reaction time, and 

catalyst amount on the yield of acid-catalyzed methyl ester, the experimental setup shown in 

Figure 3.1 was used. The equipment includes a 1000 cc glass container with a hot plate and 

stirrer, a thermocouple, a thermocouple reader, and a water condenser. The maximum 

reaction temperature, 60°C, was selected because it is just slightly below the boiling point of 

methanol so the reaction vessel does not need to be pressurized. During the reaction, any 

evaporated methanol will be returned to the glass container by the condenser. The mixture 

was stirred at the same rate for all runs. This system was used for investigating acid-

catalyzed pretreatment of high FFA level feedstocks. Then, after the FFA level had been 

reduced to less than 1%, the same setup was used for alkaline-catalyzed transesterification 

without heating or condensing. 
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Figure 3.1: Schematic diagram of the small-scale transesterification system setup 

This study included an investigation of the impact of the biodiesel prepared from 

yellow grease on engine performance and exhaust emissions and comparisons were made to 

biodiesel from soybean oil and No. 2 diesel fuel. A John Deere 4276T, four-cylinder, four-

stroke, turbocharged diesel engine was used for this purpose. The engine was connected to a 

150 HP General Electric (Schenectady, NY) model TLC 2544 direct current dynamometer. 

The combustion system of the diesel engine was a bowl-in-piston, direct-injection, medium-

swirl type. The engine was equipped with a distributor type fuel pump. The fuel injectors 

have four 0.305-mm diameter holes with an opening pressure of 207 bar. The basic 

specifications of the engine are shown in Table 3.1. 

Two different fuel blends (20% and 100%) were prepared with yellow grease methyl 

ester in No. 2 diesel fuel, and soybean oil methyl ester in No. 2 diesel fuel. The No. 2 diesel 

3.2. Diesel Engine Setup and Test Schedule 
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fuel was purchased from a commercial supplier. The blends were tested at full load (100%) at 

1400-rpm engine speed where the engine torque was 190-ft-lb f. The tests were performed at 

steady state conditions. The fuels were tested in random order and each test was repeated 3 

times. The results were averaged to decrease the uncertainty. The test matrix is shown in 

Table 3.2. 

Table 3.1: Specifications of John Deere 4276T model diesel engine 

Bore 106.5 mm 

Stroke 127.0 mm 

Connecting Rod Length 202.9 mm 

Compression Ratio 16.8:1 

Maximum Power 57.1 kW @ 2100 rpm 

Peak Torque 305.0 Nm @ 1300 rpm 

Table 3.2: The engine test conditions and fuel blends 

Repetition Fuel Type 

First 
(Full Load at 1400 rpm) 

No. 2 Diesel Fuel 

First 
(Full Load at 1400 rpm) 

20% Yellow Grease Methyl Ester & 80% No. 2 Diesel Fuel 
First 

(Full Load at 1400 rpm) 
Yellow Grease Methyl Ester 

First 
(Full Load at 1400 rpm) 

20% Soybean Oil Methyl Ester & 80% No. 2 Diesel Fuel 

First 
(Full Load at 1400 rpm) 

Soybean Oil Methyl Ester 

Second 
(Full Load at 1400 rpm) 

No. 2 Diesel Fuel 

Second 
(Full Load at 1400 rpm) 

20% Yellow Grease Methyl Ester & 80% No. 2 Diesel Fuel 
Second 

(Full Load at 1400 rpm) 
Yellow Grease Methyl Ester 

Second 
(Full Load at 1400 rpm) 

20% Soybean Oil Methyl Ester & 80% No. 2 Diesel Fuel 

Second 
(Full Load at 1400 rpm) 

Soybean Oil Methyl Ester 

Third 
(Full Load at 1400 rpm) 

No. 2 Diesel Fuel 

Third 
(Full Load at 1400 rpm) 

20% Yellow Grease Methyl Ester & 80% No. 2 Diesel Fuel 
Third 

(Full Load at 1400 rpm) 
Yellow Grease Methyl Ester Third 

(Full Load at 1400 rpm) 
20% Soybean Oil Methyl Ester & 80% No. 2 Diesel Fuel 

Third 
(Full Load at 1400 rpm) 

Soybean Oil Methyl Ester 
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3.3. Data Acquisition System and Emission Measurement Equipment 

In the engine test, two pressure transducers, a Kistler Model 606IB and a Model 

6230M1, were installed in the engine cylinder head and the number one cylinder injection 

line to measure cylinder and injection pressure data, respectively. The specifications of these 

pressure transducers are shown in Appendix D. Two charge amplifiers, both of which were 

PCB Piezotronics Model 462A, amplified the pressure signals. High-speed data were 

acquired using a Labview program and a National Instruments data acquisition system Model 

AT-M10-16E-10 board, and the data were stored in a Pentium II computer for analysis. A 

BEI Electronics, Inc. Model H-25 optical shaft encoder, supplied the engine crank angle 

signal. 

A schematic diagram of the exhaust emission measurement system is shown in Figure 

3.2. Calibration of each analyzer was done before each test. The calibration curves are shown 

in Appendix E. Using the appropriate calibration curve, the measurement error for each 

analyzer was reduced to less than 2%, as was recommended in the exhaust analyzer bench 

manual. In the measurements of the engine exhaust emissions, the following instruments 

were used: 

> Rosemount Analytical, Inc., model 755R non-dispersive infrared 0% monitor, 

> Rosemount Analytical, Inc., model 880A non-dispersive infrared CO analyzer, 

> Rosemount Analytical, Inc., model 880A non-dispersive infrared CO2 analyzer, 

> J.U.M. Engineering, model VE7, flame ionization detector (FID), HC analyzer, 

> Beckman Industrial Corp., model 955 chemiluminescent NO/NO* analyzer, and 

> Robert Bosch GMBH, model ETD02050 smoke meter. 
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Figure 3.2: Schematic diagram of exhaust emission measurement system 
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4. DATA ANALYSIS AND CALCULATION 

One of the main tasks of this study was to compare the engine performance and 

emission levels among the fuels used in the diesel engine. In this chapter, the engine data 

calculations and statistical analysis will be discussed. The first section discusses the data 

analysis of the exhaust emissions and the humidity correction factor for NOx. The second 

section describes the cylinder and injection pressure analysis. The third section presents the 

heat release analysis that was used to determine the start of combustion. In the last section, 

the statistical analysis methods performed on the data for engine performance and emissions 

are presented. 

4.1. Data Analysis 

To compare the engine performance and emission results for biodiesel from a high 

FF A feedstock (yellow grease) with biodiesel from soybean oil and with No. 2 diesel fuel, 

the data were converted to the units of g/kW-hr, known as a "brake specific" basis. This is 

the most common way to present emissions data since it is easy to compare brake specific 

values between engines of different size. To do this conversion, it is necessary to develop a 

balanced chemical equation of the combustion reaction. The first section describes this 

exhaust emission calculation process. Then, the second section discusses the humidity 

correction factor for NOx. 

4.1.1. Exhaust Emissions 

The chemical combustion equation for diesel fuel is required to convert the measured 

exhaust emissions to brake specific emissions. A general chemical equation is shown below 
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for the complete combustion of an oxygenated hydrocarbon fuel. 

C,HyOz + A (0.21 02 + 0.79 N2) B (yc02. dry CO, + y02. dry 02 + yN2. dry N2) + D (H20) (4-1 ) 

where x = number of carbon atoms in the fuel molecule 

y = number of hydrogen atoms in the fuel molecule 

z = number of oxygen atoms in the fuel molecule 

y i, dry= mole fraction of a chemical species on the dry basis 

A = air-fuel ratio (molar) 

B = number of moles of dry products per mole of fuel 

D = number of moles of water per mole of fuel 

In this equation, B and D can be calculated by atomic balance. Therefore 

B = A + (z/2) - (y/4) (4-2) 

D = y/2 (4-3) 

Now B and D can be used to find the brake specific (BS) emissions. The brake specific 

equations for each gaseous species are as follows. 

BSco = [kmol CO / kmol dpg] * [kmol dpg / kmol fuel] * [kmol fuel / kg fuel] 

* [kg fuel / hr] * [kg CO / kmol CO] * [ 1 / Pb] (4-4) 

= [yco, dry] * [B] * [1 / MWfUei] * [mfue,] * [MWm] * [1 / Pb] 

= kg CO/ kW-hr 

BScoz = [kmol CO2 / kmol dpg] * [kmol dpg / kmol fuel] * [kmol fuel / kg fuel] 

* [kg fuel / hr] * [kg C02 / kmol C02] * [1 / Pb] (4-5) 
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BSNO= [kmol NO / kmol wpg] * [kmol wpg / kmol fuel] * [kmol fuel / kg fuel] 

* [kg fuel / hr] * [kg NO / kmol NO] * [1 / Pb] (4-6) 

BSnox = [kmol NOx / kmol wpg] * [kmol wpg / kmol fuel] * [kmol fuel / kg fuel] 

* [kg fuel / hr] * [kg NOx / kmol NOx] * [1 / Pb] (4-7) 

BSHC = [kmol HC / kmol wpg] * [kmol wpg / kmol fuel] * [kmol fuel / kg fuel] 

* [kg fuel / hr] * [kg HC / kmol HC] * [ 1 / Pb] (4-8) 

where dpg = dry product gas 

wpg = wet product gas 

MW = molecular weight 

mfuei - fuel flow rate (kg/hr) 

Pb = brake power (kW) 

kmol = kilo mole 

The molecular weights of the blends of ester and diesel fuel can be calculated as 

follows: 

MWblend = yd * MWdiesC| + ye * MWestCr (4-9) 

where MWb|Cnd = molecular weight of the fuel blend 

MWdiesci = molecular weight of the diesel fuel 

MWester = molecular weight of the ester 

yd = mole fraction of the diesel in the fuel blend 

ye = mole fraction of the ester in the fuel blend 
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And x, y, and z for carbon, hydrogen, and oxygen atom number for the fuel blends, 

respectively, can be obtained in the following way; 

X Yd * Ncdiesel Ye * Nfester 

y = yd * Nwdiescl +ye * NHester (4-10) 

Z Yd * Nodiesel "*™ Vc * Nocster 

where Ncdiesci = carbon atom number in the diesel fuel 

Nosier = carbon atom number in the ester 

NHdiesei = hydrogen atom number in the diesel fuel 

NHester = hydrogen atom number in the ester 

Nodiesel = oxygen atom number in the diesel fuel 

Noester = oxygen atom number in the ester 

4.1.2. Humidity Correction Factor for NO, 

The Society of Automotive Engineers [83] recommends that a NOx humidity 

correction factor be used since the engine intake air contains some humidity. The specific 

humidity of the air, h, is computed from following equation. 

. 621.10*Pv h = — — 

Pb Pv 
(4-11) 

where h = specific humidity (g HzO / kg dry air) 

Pb = observed barometric pressure (kPa) 

Pv = partial pressure of water vapor (kPa) 
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The partial pressure of water vapor, Pv, can be calculated from Ferrer s equation [84]. 

Pv = P,v - 1.80 A * Pb ( Tlt - Tw) (4-12) 

where Pw = saturation pressure of water vapor at the wet bulb temperature (kPa) 

T,i - dry bulb temperature (°C) 

Tw = wet bulb temperature (°C) 

A = an experimentally derived constant, = 3.67 * 10"4 (1 + 0.001152 * Tw) 

The saturation pressure of water vapor at the wet bulb temperature can be obtained 

from a least square fit to Keenan and Keye's steam table [85]. 

Pw = 0.6048346 + 4.59058 * 10"2 Tw + 1.2444 * 10*3 Tw 
2 + 3.52248 * 10-5 Tw 

3 + 

9.32206 * 10'* Tw4 + 4.18128 * 10'" Tw
5 (4-13) 

Now, the corrected NOx concentration can be calculated as [80]: 

[NO]corr = [NO]wet* y (4-14) 
k 

where [NO]corT = corrected NO concentration (ppm) 

[NO]wet = measured NO concentration on a wet basis (ppm) 

k= 1 + 7 A (A-10.714) +1.8 B (T-29.444) 

A = 0.044 (F/A)-0.0038 

B = -0.116 (F/A) +• 0.0053 

T = intake air temperature (°C) 

F/A = fuel air ratio (dry basis) 
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4.2. Analysis of Injection Pressure Cylinder Pressure and Ignition Delay 

Measurements of the engine cylinder pressure and fuel injection pressure were taken 

using the same procedure. Two sets of data were taken at each run for injection and cylinder 

pressure. To eliminate the random noise, a large number of cycles were collected. Both data 

sets consisted of fifty cycles of averaged data taken every V* of a degree. The data acquisition 

system provided the voltage levels corresponding to the pressure values. Then, these voltage 

levels were converted to pressure units. The injection pressure data were used to estimate the 

fuel injection timing and the cylinder pressure data were used to calculate heat release rates 

and the start of combustion. 

A sample of the fuel injection pressure profiles is shown in Figure 4.1. These 

measured pressures may not be exactly the same as the actual pressure at the nozzle tip since 

the pressure is measured in the line, several inches away from the nozzle tip. The profiles 

show the pressure waves which move back and forth in the injection line [86]. 

A sample of the cylinder pressure profiles is shown in Figure 4.2. Since, the 

piezoelectric transducers do not hold an absolute pressure, it was necessary to establish an 

absolute reference pressure. The pressure at the bottom dead center before compression was 

assumed to be equal to the intake manifold pressure, following the techniques of Lancaster et 

al. [87]. 

The definition of the ignition delay in a diesel engine is the time between the start of 

fuel injection and the start of combustion. The start of injection is usually taken as the time 

when the injector needle lifts off its seat. Instrumentation to directly measure the timing of 

this event was not available so an alternative method to determine the start of injection was 

needed. Measurement of the injector needle opening pressure had shown that fuel would be 
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Figure 4.1: Sample of injection pressure profiles 
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injected into the cylinder at an injection line pressure of 207 bar [78]. The time when the 

measured injection line pressure reached this pressure was taken to be the start of fuel 

injection. The start of combustion is more difficult to determine precisely, since three 

possible definitions of ignition delay have been defined by Henein and Bolt [88]. The first is 

the illumination delay, which is the time between the start of injection and the start of the 

luminous flame in the engine. The second is the temperature rise delay, which is the time 

from the start of injection to a specified cylinder-average temperature rise due to combustion. 

The third is the pressure rise delay, which is the time between the start of injection and a 

specified pressure rise due to combustion. However, Van Gerpen [89] suggested an 

alternative way to determine ignition delay. He proposed that the rate of heat release be used 

as the basis for the start of combustion. For this method, the start of combustion was defined 

in terms of the change in the slope of the heat release rate that occurs at the time of ignition. 

For the current study, the ignition delay was calculated as the time between when the 

injection pressure line reached 207 bar and when the change occurred in the slope of the heat 

release rate at the point of ignition. 

4.3. Heat Release Analysis and Cylinder Pressure Smoothing Technique 

Engine cylinder pressure data were used to evaluate the rate of heat release. In this 

study, a simplified version of the heat release combustion model of Krieger and Borman [90] 

was used. In this model, the experimental cylinder pressure data are used to compute an 

apparent fuel-burning rate. The model assumes thermodynamic equilibrium during 

combustion in the cylinder, but ignores temperature gradients, pressure waves, 

nonequilibrium conditions, fuel vaporization, mixing, and so on. 
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From the first law of thermodynamics 

— = Q-W 
dt 

(4-15) 

m C -  =  Q - P —  
dt dt 

(4-16) 

where Q= the combination of the heat release rate and the heat transfer rate across the 

cylinder wall 

W = the rate of work done by the system due to system boundary displacement 

To simplify equation (4-16) the ideal gas assumption can be used. 

PV = mRT 

Equation (4-17) can be differentiated (assuming constant mass): 

(4-17) 

dT 1 

dt mR 
Pd±,vdI-

dt dt 
(4-18) 

After combining these two equations, the heat release equation becomes: 

Q = G 

R 
+ 1 

dt R dt 
(4-19) 

After replacing time (f) with the crank angle (0), the equation becomes 

A - l  d 9  A - l  d O  
(4-20) 

where k = the ratio of specific heats, G/G. For diesel heat release analysis, A is 1.3 to 1.35 

[91]. 
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A sample heat release rate profile calculated using the above procedure is shown in 

Figure 4.3. Due to heat loss from the cylinder and the cooling effect of the fuel vaporizing as 

it is injected into the cylinder, the heat release rate is slightly negative during the ignition 

delay period. The initial phase of combustion, called the premixed combustion, is very rapid 

because of the combustion of the fuel that has mixed with air during the ignition delay. After 

this phase, the combustion continues slowly until most of fuel is burned. This phase of 

combustion is called mixing-controlled combustion. The final combustion phase is the late 

combustion which continues until the end of the expansion stroke. 

The heat release rate equation (4-20) contains two derivative terms; the time 

derivative of the volume and the time derivative of the pressure. The time derivative of 

volume is an easily calculated quantity. However, calculating the time derivative of pressure 

is more difficult. Errors in the pressure data or in the differentiation process will significantly 

affect the heat release rate. Austen and Lyn [92] showed that a 1-degree error in the pressure 

measurement can cause a 50% error in the heat release rate. Van Gerpen [89] also showed 

that small oscillations in the pressure data caused errors in the heat release rate curve. 

Monyem [78] tested the use of two or three grid points for first-derivative 

approximations as forward, backward, and central difference representations, but they failed 

to provide good results. All provided very noisy pressure derivatives. Then Monyem used a 

four-point difference approximation to differentiate the pressure data and this technique 

provided a better result. This same method was used in this study to calculate the rate of heat 

release. The first-derivative approximation using four points was: 

(du/dx) j = (-u i+2 + 8 u j+i - 8 u m + u j.2) / (12*A9) (4-21) 
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Figure 4.3: Heat release profile before and after filtering 
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where i = a specific time or crank angle 

u j = pressure at crank angle i 

A0 = crank angle interval between i and i+1 

It is also necessary to provide some smoothing of the pressure data to reduce the unwanted 

noise. A smoothing technique called 'digital filtering' can reduce noise dramatically [89]. 

Digital filtering is a numerical process where a new set of data is produced which has 

different frequency characteristics. The digital filtering technique used for this study was as 

follows. 

g i = (f I-! + f t+i) / 2 (4-22) 

h j  =  (g  i- i  +  g i  +  g i+i ) /3  (4-23)  

where f j = the original data 

g j = intermediate value 

h j = the filtered data 

As samples of the smoothing technique used in this study, Figures 4.3, 4.4, and 4.5 

show the unsmoothed and smoothed data vs. crank angle for heat release rate, cylinder 

pressure, and first derivative of cylinder pressure, respectively. The large amplitude 

oscillations in the cylinder pressure and in the first derivative of the cylinder pressure curves 

were mostly gone after filtering while the large peak due to the rapid combustion was 

reduced somewhat but still prominent. 
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4.4. Statistical Analysis 

Statistical analyses were performed on the data collected in the engine testing of 

different fuels. Using analysis of variance (ANOVA) and Tukey's grouping methods, the 

engine performance and emissions of each fuel were compared to each other to determine 

whether or not there was a significant difference between the fuels. More extensive 

explanation of these methods is provided in Ott [93] and Barnes [94]. A significance level of 

0.05 (95% confidence interval) was used for the analyses. The Tukey's grouping tables are 

presented in the Engine Test Results and Discussion chapter. A sample SAS program, written 

to analyze the collected data, and another form of the statistical analysis data, the ANOVA 

tables, is also shown in Appendix F for each variable. 
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5. BIODIESEL PRODUCTION FROM HIGH FFA FEEDSTOCKS 

In this chapter, the process development for biodiesel production from high free fatty 

acid feedstocks will be described. This will be followed by a chapter that discusses the effect 

of the biodiesel produced from these feedstocks on diesel engine emissions and performance. 

Experiments conducted very early in this project showed that feedstocks with high 

free fatty acid levels could not be transesterified with the alkaline catalysts which have been 

used with good success for vegetable oils. The alkaline catalyst reacts with the FF As to form 

soaps which remove the catalyst from the reaction and prevent the separation of the glycerin 

and the ester. It was known from the literature that acid catalysts could be used for 

transesterification and did not have these disadvantages. 

While there have been many studies into the use of acid catalysts, and several of those 

studies were described in the literature review, there have not been any detailed studies of the 

effects of the various process parameters on the acid catalyzed transesterification reaction. It 

was determined that conducting such a study was an important first step in developing a 

process for high FFA feedstocks. In the first part of this chapter, the results of this study into 

the preparation of methyl esters with sulfuric acid catalyst is presented. The effect of the 

molar ratio of alcohol, reaction temperature, catalyst amount, reaction time, water, and FFA 

level on the completion of the acid-catalyzed reaction will be presented. 

When the acid catalyzed reaction with vegetable oil feedstocks was understood, the 

study was extended to feedstocks with elevated levels of FF As. Since it was difficult to 

obtain high FFA feedstocks with stable properties and consistent purity, a synthetic high FFA 

feedstock was studied. This feedstock was prepared by adding a pure FFA to soybean oil. 
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The results of the tests conducted to investigate the preparation of methyl ester from the 

material with high FFA using a synthetic mixture are presented here. In that section, the 

effect of variables such as methanol molar ratio, acid catalyst amount, and reaction time on 

the reduction of FFA level will be presented. One of the conclusions that will be drawn is 

that the high FFA feedstocks are most efficiently transesterified by a combination of acid-

catalyzed pretreatment followed by an alkaline-catalyzed main reaction. 

The final step in the process development was to test the process with actual samples 

of high FFA feedstocks such as yellow and brown grease. This section also includes the 

effect of the acid value on the alkaline-catalyzed transesterification reaction. The next two 

sections discuss preparation of methyl esters from yellow grease and brown grease and 

compare the simulated high FFA feedstock study and the actual animal fat study and the 

differences which affect the reactions are discussed. These sections also include the effect of 

different alkaline catalysts and their amounts on the main transesterification reaction, and on 

the residual soap and catalyst analysis. The effect of the solubility of the alcohols, the 

number of steps in the acid-catalyzed pretreatment reaction, and alkaline catalyst type and 

amounts on the yield will also be discussed. Then, the final sections will describe the 

implementation of the process into a 50-gallon per day pilot plant. Actual experience with 

large-scale biodiesel production from soybean oil, yellow grease, and brown grease will be 

described. 

5.1. Preparation of Methyl Ester with Sulfuric Acid Catalyst 

One of the tasks of this study was to investigate the effect of process variables on 

acid-catalyzed transesterification since acid catalysts can be used to esterify material with 
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high FF As. The variables that affect acid-catalyzed biodiesel were investigated using the 

small-scale transesterification system described earlier. The molar ratio of alcohol, reaction 

temperature, catalyst amount, reaction time, and the inhibiting effect of water were 

investigated to determine the best strategy for producing biodiesel. The soybean oil was 

purchased from a local food store. The alcohol used was methanol and sulfuric acid was the 

catalyst. To compare the effect of different alcohol types on ester formation, methanol, 

ethanol, 2-propanol, and n-butanol were compared. The experimental conditions are given in 

Table 5.1. 

The following procedure was used to prepare acid-catalyzed biodiesel. Solutions of 

sulfuric acid in methanol were prepared at room temperature. The sulfuric acid percentage 

was based on the weight of vegetable oil (1%, 3%, and 5%). Then, the solution was added to 

the vegetable oil at the required temperature (60°C, 45°C, and 25°C) while stirring. The 

mixture was gently stirred for 48 (or 96) hours at atmospheric pressure and the required 

Table 5.1: Reaction conditions for methyl ester preparation 

Run Reaction % Molar Reaction 
No. Temperature C C) Catalyst* Ratio** Time (hours) 
1 60 3 3.3:1 48 

2 60 3 3.9:1 48 
3 60 3 6:1 48 

4 60 3 20:1 48 

5 60 3 30:1 48 

6 60 3 6:1 96 
7 25 3 6:1 48 

8 45 3 6:1 48 

9 60 1 6:1 48 

10 60 5 6:1 48 
* Su fiiric acid. 
** Methanol to soybean oil. 
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temperature. After the reaction period was complete, the ester and glycerin layers were 

allowed to separate in a separatory funnel. Then, the methyl esters were washed four times 

with distilled water to remove the excess alcohol and catalyst. Previous studies [14] had 

shown that four washing cycles is sufficient. Finally, the ester was stirred with around 100 cc 

of pure glycerin for 15 minutes to extract the residual water in the ester, and then separated 

again. This glycerin was also to remove some of the polar contaminants such as 

monoglycerides. 

The completeness of the reaction was measured using the American Oil Chemists' 

Society (A.O.C.S.) Official Method Ca 14-56 known as the Total, Free and Combined 

Glycerin (Iodometric-Periodic Acid) Method [95]. This method determines the total, free, 

and combined glycerin in fats and oils. The test procedure is given in Appendix A. The 

fraction of the original glycerin from the oil that is present in the ester was subtracted from 

100% and this quantity was defined to be the completeness of the reaction. The specific 

gravity of the ester at 15.5°C was also measured and recorded after each test as a second 

indicator of the reaction completeness. 

5.1.1. Effect of Molar Ratio 

The molar ratio of alcohol to vegetable oil is one of the most important factors that 

influence the conversion of vegetable oil to its ester. For the stoichiometric reaction, 3 moles 

of alcohol are required per mole of vegetable oil. In reality, the molar ratio should be higher 

than the theoretical ratio to drive the reaction to completion. To investigate the effect of 

molar ratio, five different molar ratios, 3.3:1, 3.9:1, 6:1, 20:1, and 30:1, were selected. Each 

reaction was run for 48 hours with 3% acid catalyst at 60°C. The changes in conversion and 
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the specific gravity of the methyl esters are shown in Table 5.2 and Figure 5.1. Ester 

conversions reached a maximum of 98.4% at the 30:1 molar ratio. The specific gravity of the 

ester decreased somewhat with increasing molar ratio which is probably due to a decrease in 

residual triglycerides. The maximum and minimum specific gravities were measured at 3.3:1 

and 30:1 molar ratios, and were 0.8916 and 0.8840, respectively. 

Table 5.2: Effect of molar ratio on ester conversion and specific gravity of ester 

Molar Ratio Ester Conversion (%) Spe. Gravity of the Ester 

3.3:1 77.2 0.8916 
3.9:1 80.6 0.8914 

6:1 87.8 0.8876 

20:1 96.4 0.8840 

30:1 98.4 0.8836 
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Figure 5.1: Effect of molar ratio on ester conversion 
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5.1.2. Effect of Reaction Temperature 

Another important factor that affects the conversion of vegetable oil to its ester is the 

reaction temperature. Three different reaction temperatures, 25°C, 45°C, and 60°C, were 

selected to determine the effect of temperature on ester formation. The highest reaction 

temperature, 60°C, was selected because it is near the boiling point of methanol. Each 

reaction was run for 48 hours with 3% acid catalyst and a 6:1 molar ratio test condition. The 

changes in the ester formation and specific gravity of the methyl ester are shown in Table 5.3 

and Figure 5.2. As can be seen, the ester conversion increased with increasing reaction 

temperature. Ester conversions were 8.3%, 57.2% and 87.8% at 25°C, 45°C, and 60°C, 

respectively. The specific gravity of the ester decreased with increasing reaction temperature. 

At 25°C the maximum specific gravity of the methyl ester was 0.9171 which is close to the 

original specific gravity of the soybean oil. Acid-catalyzed transesterification appears to 

require temperatures of at least 60°C. 

Table 5.3: Effect of reaction temperature on the conversion and specific gravity of ester 

Temperature (° C) Ester Conversion (%) Spe. Gravity of the Ester 

25 8.3 0.9171 

45 57.2 0.8978 
60 87.8 0.8876 

5.1.3. Effect of Catalyst Amount 

The catalyst amount is another important factor that affects the conversion of 

vegetable oil to its ester. Three different catalyst amounts, 1%, 3%, and 5% sulfuric acid, 

were selected. These percentages were weight fractions of the oil supplied for the reaction. 



www.manaraa.com

80 

For each case, the reaction continued for 48 hours at 60°C with a 6:1 molar ratio of methanol 

to oil. The relationships between the catalyst amount, the ester formation and specific gravity 

of the methyl ester are shown in Table 5.4 and Figure 5.3. Ester formation increased with 

increasing catalyst amount. The ester conversions were 72.7%, 87.8% and 95.0% at 1%, 3%, 

and 5% sulfuric acid, respectively. The specific gravity of the ester decreased with 

increasing catalyst amount. 
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Table 5.4: Effect of catalyst amount on ester conversion and specific gravity of ester 

% Sulfuric Acid Ester Conversion (%) Spe. Gravity of the Ester 

I 72.7 0.8933 
3 87.8 0.8876 
5 95.0 0.8858 
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5.1.4. Effect of Reaction Time 

The reaction time was also expected to affect the conversion of vegetable oil to its 

ester. Two different reaction times, 48 and 96 hours, were evaluated. For each case, the 

reaction was conducted with 3% catalyst, 6:1 molar ratio, and a 60°C test condition. The 

relationship between reaction time and ester formation and specific gravity of methyl ester is 

shown in Table 5.5 and Figure 5.4. Ester formation increased with increasing reaction time. 

Ester conversions reached 87.8% and 95.1% at 48 hours and 96 hours, respectively. It should 

be noted that the same ester conversion that was achieved with 5% catalyst in 48 hours was 

measured with 3% catalyst after 96 hours. 
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Table 5.5: Effect of reaction time on ester conversion and specific gravity of ester 

Run Time (hours) Ester Conversion (%) Spe. Gravity of the Ester 

48 87.8 0.8876 
96 95.1 0.8838 
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Figure 5.4: Effect of reaction time on ester conversion 

5.1.5. Effect of Alcohol Type 

To investigate the effect of different alcohol types on transesterification, 2-propanol, 

1-butanol, ethanol, and methanol were tested for a 48-hour test period, with 3% sulfuric acid 

catalyst, and a 6:1 molar ratio of alcohol to oil. The reaction temperatures were selected to be 

a few degrees below the boiling points of the alcohols and are shown in Table 5.6. The 

relationship between alcohol type and ester conversion is also shown in Table 5.6. The 
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highest ester conversion occurred with ethanol. The conversion to ethyl ester was 95.8% 

compared with 92.9%, 92.1%, and 87.8% for 2-propyl ester, 1-butyl ester, and methyl ester, 

respectively. The higher conversion rates found for the longer chain alcohols compared with 

methyl ester are probably due to the higher reaction temperatures allowed by their higher 

boiling points. This effect apparently dominates the decrease in reaction rate associated with 

longer chain alcohols noted by other researchers [38,41]. 

Table 5.6: Effect of alcohol type on ester conversion and specific gravity of ester 

Alcohol 
Type 

Boiling 
Temperature (°C) 

Reaction 
Temperature fQ 

Ester Conversion 
(%) 

Spec. Gravity 
of the Ester 

Methanol 65 60 87.8 0.8876 

2-Propanol 82.4 75 92.9 0.8786 

1-Butanol 117 110 92.1 0.8782 

Ethanol 78.5 75 95.8 0.8814 

5.1.6. Effect of Water 

In the transesterification of vegetable oil with alkaline catalysts, it has been 

emphasized that the vegetable oil and alcohol should be water-free, since water strongly 

inhibits the reaction [47,60]. 

To investigate the tolerance of water in acid-catalyzed transesterification, different 

amounts of distilled water were added to the vegetable oil. The test duration was 96 hours 

with 3% acid catalyst and the reaction was conducted at 60°C with a 6:1 molar ratio. The 

effect of the water percentage in the oil on the ester conversion and specific gravity of the 

methyl ester is shown in Table 5.7 and Figure 5.5. As little as 0.1% water addition (based on 

the weight of the vegetable oil) reduced the ester yield. When more water was added to the 

vegetable oil, the amount of methyl esters formed was significantly reduced. The addition of 
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5% water reduced the ester conversion to only 5.6% while the ester conversion without water 

was 95.1% at the same reaction conditions. Our results indicate that more than 0.5% water in 

the oil will decrease the ester conversion to below 92%. 

Table 5.7: Effect of water on the ester conversion and specific gravity of the methyl 
ester 

Water % Ester Conversion (%) Spe. Gravity of the Ester 
0.0 95.1 0.8838 
0.1 94.1 0.8875 
0.3 94.0 0.8873 
0.5 92.1 0.8873 
1.0 83.6 0.8899 
3.0 33.7 0.9102 
5.0 5.6 0.9159 

Test Conditions: 
Molar Ratio: 6:1 
Sulfuric Acid Amount: 3% 
Reaction Temperature: 60°C 
Reaction Time: 96 Hours 

-B- Ester Conversion (%) 

Spe. Gravity of the Ester 

%-Water 

Figure 5.5: Effect of water on the ester conversion and specific gravity of the methyl 
ester 
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5.1.7. Effect of Free Fatty Acids 

To investigate the effect of free fatty acid level on ester conversion, different amounts 

of palmitic acid (Aldrich Chemical Co., 99%) were added to soybean oil to obtain 5%, 10%, 

15%, 20%, and 33% free fatty acid levels. Palmitic acid was chosen as a representative for 

the free fatty acids because it is easily obtained and relatively inexpensive. It also is one of 

the major fatty acids found in the processed grease from dead stock rendering plants, one of 

the feedstocks under consideration in the current study. The test conditions included a 96 

hour test period, 3% sulfuric acid catalyst, 60°C, and 6:1 molar ratio. The relationship 

between the palmitic acid in the oil and the ester conversion and specific gravity of the 

methyl ester is shown in Table 5.8 and Figure 5.6. 

The conversion rate of soybean oil to methyl ester drops below 90% for free fatty 

acid levels above 5%. An attempt was made to compare the tolerance of an alkaline catalyst 

(potassium hydroxide) to free fatty acids but the addition of 5% palmitic acid produced a 

solid soap mixture that prevented separation of the glycerin from the methyl ester. 

The reaction of palmitic acid with methanol forms water as well as the ester, as 

shown in the reaction equation (5-1) below. As was seen in the previous section, water 

strongly inhibits the ester-formation reaction. For each case of palmitic acid addition, the 

water amount produced by the palmitic acid reaction was calculated, and compared with the 

water addition test. The results are shown in Figure 5.7. The test results show that the 

palmitic acid addition and the water addition tests have the same inhibiting effect on 

esterification. It appears that the inhibiting effect of the free fatty acids is entirely due to the 

water produced by the reaction. For comparison, the effect of water on an alkaline (KOH) 

catalyst is also shown. The results show that the transesterification with alkaline catalyst is 
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more tolerant of water. 

O O 
Il H2SO4 || 

CH3—(CH2)is—C—OH + CH3OH -• CH3 —(CH2)i5—C—O —CH3 + H2O (5-1) 

Table 5.8: Effect of palmitic acid on the ester conversion and specific gravity of the 
methyl ester 

% Palmitic Acid Ester Conversion (%) Spe. Gravity of the Ester 
0 95.1 0.8838 
5 90.5 0.8862 
10 88.4 0.8866 
15 80.3 0.8874 
20 72.2 0.8887 
33 58.8 0.8893 
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Test Conditions: 
Molar Ratio: 6:1 
Sulfuric Acid Amount: 3% 
Reaction Temperature: 60°C 
Reaction Time: 96 Hours 
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Figure 5.6: Effect of palmitic acid on the ester conversion and specific gravity of the 
methyl ester 
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Figure 5.7: Comparison of the free fatty acid and water addition tests 

5.1.8. Summary of the Acid Catalysis Study 

The objective of this phase of the project was to investigate the acid-catalyzed methyl 

ester production process. The variables affecting ester formation including molar ratio, 

reaction temperature, catalyst amount, and reaction time were investigated to determine the 

best strategy for producing biodiesel. The following conclusions can be drawn from the acid-

catalyzed biodiesel production study. 

1. Acid-catalyzed transesterification is much slower than alkali-catalyzed transesterification. 

2. The ester conversion efficiency is strongly affected by the molar ratio of alcohol to oil. In 

acid-catalyzed esterification, a higher molar ratio is required than for alkali-catalyzed. 

3. If the acid-catalyzed reaction occurs at room temperature, the reaction is very slow and 

1 , ,  

Test Conditions: 

(For Acid Catalyst Transesterification) 
Molar Ratio: 6:1 
Sulfuric Acid Amount: 3% 
Reaction Temperature: 60°C 
Reaction Time: 96 Hours 

(For Alkaline Catalyst Transesterification) 
1 -6_ Ester Conversion (%) \ Molar Ratio: 6:1 

(with water from KOH Amount: 1% 
reaction of palmitic X. Reaction Temperature: Room 
acid) \ v Reaction Time: 8 Hours 

-Q- Ester Conversion (%) 
(for acid catalyzed 
reaction with added 

; water) 

l Ester Conversion (%) 
; (for alkali catalyzed 

reaction with added 
I water) 
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poor ester conversion is obtained. 

4. The completeness of ester formation increases with increasing acid catalyst amount. 

5. The ester conversion is strongly inhibited by the presence of water in the oil. If the water 

concentration is greater than 0.5%, the ester conversion rate may drop below 90%. 

6. Alcohols with high boiling temperature increase ester conversion. The higher reaction 

temperatures allowed by longer chain alcohols apparently dominate any tendency toward 

reduced reaction rates for these alcohols. 

7. The amount of free fatty acids in vegetable oils can have a significant effect on the 

transesterification reaction. The water formed by the esterification inhibits further 

reaction. Free fatty acid levels above 5% can lower the ester conversion rate below 90%. 

5.2. Preparation of Methyl Ester from Material with High FFA 

The objective of this study was to prepare methyl esters from fats and oils with high 

FF As. The work described in the previous section showed that it was possible to do this with 

acid catalysis. However, the reaction times were unacceptably long and water inhibition 

appeared to place a severe constraint on the FFA level that could be processed. Another 

researcher pointed out that the acid catalyzed reaction of the FF As to monoesters was much 

faster than the reaction of triglycerides to monoesters [96]. This gave rise to the possibility of 

using an acid-catalyzed pretreatment step to convert the FF As followed by an alkali-

catalyzed step to convert the triglycerides. A search of the patent literature showed that 

others had taken advantage of this approach and some of this work was described in the 

literature review [63]. This section describes a series of tests that were conducted to develop 

the acid-catalyzed pretreatment process. 
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Since animal fat tends to have variable properties that could influence the 

repeatability of our tests, a simulated animal fat was prepared to develop the procedure. 

Synthetic mixtures with high FFA were prepared by adding 20% and 40% palmitic acid to 

soybean oil. The initial acid value of the soybean oil was measured to be 0.10 mg KOH/g. 

After palmitic acid addition, the acid value increased to 41.33 and 91.73 mg KOH/g for 20% 

and 40% palmitic acid in the mixture, respectively. These are the initial values of acid value 

shown in the tables and figures presented below. As mentioned earlier, palmitic acid was 

chosen because it is one of the dominant fatty acids present in most vegetable oils and animal 

fats and it is available at relatively low cost. The effects of molar ratio, reaction time, acid 

catalyst amount, and FFA level on the acid value of the mixture were determined at 60°C. 

5.2.1. Process Development 

The approach used in this study to convert the high FFA feedstock was to utilize acid 

catalysis to convert the FF As to esters, a process that is relatively fast, and then to use 

alkaline catalysis to complete the process. Published results suggested that the acid catalysis 

must decrease the acid value of the mixture to less than 2 mg KOH/g and this was initial 

target for our pretreatment [23-25]. Previous work had shown that FFA levels above this 

amount result in less complete reaction and excessive soap formation. However, in work that 

will be presented later in this section, it was found that reducing the acid value to less than 1 

mg KOH/g gives better results for some alkaline catalysts. 

The decrease in the acid value of the mixture was monitored by periodically taking 

small samples from the reaction vessel. After the samples were stored in a refrigerator, their 

acid values were measured using the American Oil Chemists' Society (A.O.C.S.) Official 
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Method Cd 3a-63 for Acid Value [97]. The test procedure is given in Appendix B. The effect 

of the acid catalyst amount, reaction time, FFA level, and alcohol type on the acid value of 

the mixture was determined at 60°C and 6:1 molar ratio. The sulfuric acid and methanol 

amounts were calculated in this section based on the total weight of the oil/FFA mixture. 

5.2.1.1. Effect of Catalyst Amount and Reaction Time on the Acid Value of the 
Synthetic Mixture 

To investigate the influence of catalyst amount and reaction time on the acid value of 

the vegetable oil with 20% palmitic acid, four different catalyst amounts (0, 1, 3, and 5%) 

and a 1 hour reaction time were selected. The percentage of the catalyst referred to here is 

based on a fraction of the total weight of oil and FFA present. After the initial mixing of the 

reactants, samples were extracted at 1 minute, 15 minutes, 30 minutes, and 60 minutes. The 

acid values of the original vegetable oil and the vegetable oil/palmitic acid mixture before the 

alcohol was added were also recorded. All samples from the test with zero catalyst were solid 

at room temperature and required heating to allow measurement of the acid value. After 1 

hour, the reacting mixture was allowed to settle. An alcohol-water mixture was collected at 

the top of the separatory funnel for the 1% catalyst amount test. However, for the 3 and 5% 

catalyst tests the alcohol-water mixture collected at the bottom of the funnel. 

At 6:1 molar ratio, the influence of the catalyst amount on the acid value during the 

one-hour test, is shown in Table 5.9 and plotted in Figure 5.8. As can be seen, with zero 

catalyst the acid value reached only 33.38 mg KOH/g at the end of the test. However, there 

is a very rapid reduction in acid value that occurs immediately after addition of the alcohol-

acid catalyst solution to the oil-FFA mixture. With the addition of 1% catalyst, the lowest 

acid value measured after 1 hour was 1.77 mg KOH/g. With the addition of 3% and 5% 
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catalyst, the lowest acid values measured were 0.67 mg KOH/g and 0.54 mg KOH/g at the 

end of the test, respectively. After the catalyst solution addition, the acid values of the 

mixtures were measured to be almost the same. 

Table 5.9: Effect of catalyst amount and reaction time on the acid value for 20% 
palmitic acid in the mixture 

Run Time 
(hours) 

A.V. (mgKOH/g) 
at 0% Cat 

A. V. (mg KOH/g) 
at 1% Cat. 

A. V. (mg KOH/g) 
at 3% Cat. 

A.V. (mgKOH/g) 
at 5% Cat 

Soybean Oil 0.10 0.10 0.10 0.10 
After Palmitic 
Acid Addition 

41.33 41.33 41.33 41.33 

After Solution 
Addition 

38.19 13.66 13.44 14.45 

0.25 37.07 5.80 2.86 4.30 
0.50 35.73 3.83 1.15 0.92 
1.00 33.38 1.77 0.67 0.54 

5.2.1.2. Effect of FFA Level 

To investigate the effect of FFA level, the palmitic acid amount in the mixture was 

increased to 40%. Three different catalyst amounts (1,3, and 5%) and a I-hour reaction time 

were selected at 6:1 molar ratio of methanol to oil. The sampling procedure was the same as 

was used for the tests with 20% palmitic acid. 

After 1 hour, the reacting mixture was allowed to settle. For the 1% catalyst amount 

test, the alcohol-water mixture was collected at the top of the separatory funnel, but for the 

3% and 5% catalyst tests the alcohol-water mixture collected at the bottom of the funnel due 

to higher water formation during the reaction for these two catalyst levels. 

The influence of the catalyst amount on the acid value for 40% palmitic acid addition 

is shown in Table 5.10 and plotted in Figure 5.9. When the FFA level was increased to 40%, 
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Figure 5.8: Effect of catalyst amount and reaction time on the acid value for 20% 
palmitic acid in the mixture 

Table 5.10: Effect of catalyst amount and reaction time on the acid value for 40% 
palmitic acid in the mixture 

Run Time 
(hours) 

A.V. (mgKOH/g) 
at 1% Cat. 

A.V. (mgKOH/g) 
at 3% Cat. 

A. V. (mg KOH/g) 
at 5% Cat. 

Soybean Oil 0.10 0.10 0.10 
After Palmitic 
Acid Addition 

91.73 91.73 91.73 

After Solution 
Addition 

27.89 23.52 37.52 

0.25 22.40 19.15 21.06 

0.50 21.84 14.11 13.17 

1.00 18.82 8.09 6.25 
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Figure 5.9: Effect of catalyst amount and reaction time on the acid value for 40% 
palmitic acid in the mixture 
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Figure 5.10: Comparison of the acid values of 20% and 40% palmitic acid test 
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the initial acid value was measured to be 91.73 mg KOH/g. At the three catalyst levels 

studied, 1%, 3%, and 5%, the acid values measured after 1 hour were 18.82, 8.09, and 6.25 

mg KOH/g, respectively. The 20% and 40% palmitic acid tests are compared in Figure 5.10. 

The final acid value of the 40% palmitic acid test did not get as low as the 20% palmitic acid 

test due to water formation. 

5.2.1.3. Effect of Alcohol Type 

To investigate the effect of different alcohol types on the acid value reduction, 

ethanol was tested at the same conditions used previously for methanol, except that the 

reaction temperature was raised to 75°C, a few degrees below the boiling point of ethanol. 

The molar ratio was 6:1 and the catalyst amounts were 1, 3, and 5 %, based on the total 

mixture weight, for a 1 -hour reaction time. Samples were extracted at the same times as the 

earlier tests. The test results are shown in Table 5.11 and plotted in Figure 5.11 for the 20% 

palmitic acid addition case. The minimum acid value, after 1-hour, was measured to be 3.00 

mg KOH/g with 5% sulfuric acid. The acid values of the 1% and 3% catalyst test were 3.79 

mg KOH/g and 3.50 mg KOH/g, respectively, at the end of the test. It is clear from Figure 

5.11 that most of the reaction with ethanol occurs very quickly and very little additional 

reaction occurs after 15 minutes. 

The test results for the 40% palmitic acid addition case with ethanol are shown in 

Table 5.12 and plotted in Figure 5.12. After the 1 hour reaction, the minimum acid values 

were measured to be 8.09, 5.60, and 6.45 mg KOH/g for 1, 3, and 5% catalyst, respectively. 

As with the 20% palmitic acid case, the acid values of the samples after the initial ethanol 

addition did not change much, giving almost a flat line. This indicates that the ethanol reacts 
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more quickly than methanol. Another observation was that the samples taken in the tests with 

ethanol did not freeze while being stored in the refrigerator. 

5.2.2. Development of 2-Step Pretreatment Process 

The approach used in this study to process high FFA feedstocks was to use acid 

catalysis to convert the FF As to esters, a process that is relatively fast, and then to use 

alkaline catalysis to complete the process. In the literature [23-25], it has been mentioned that 

the oil should not contain more than 1% FFA for alkaline transesterification reactions. This 

corresponds to an acid value of 2 mg KOH/g. If the FFA level exceeds this amount, the 

Table 5.11: Effect of ethanol on acid value for 20% palmitic acid test 

Run Time 
(hours) 

A. V. (mg KOH/g) 
at 1% Cat. 

A. V. (mg KOH/g) 
at 3% Cat. 

A. V. (mg KOH/g) 
at 5% Cat 

Soybean Oil 0.10 0.10 0.10 
After Palmitic 
Acid Addition 

41.33 41.33 41.33 

After Solution 
Addition 

4.14 4.19 3.35 

0.25 4.17 3.58 2.46 
0.50 3.79 3.50 2.73 
1.00 3.63 3.57 3.00 

Table 5.12: Effect of ethanol on acid value for 40% palmitic acid test 

Run Time 
(hours) 

A.V. (mgKOH/g) 
at 1% Cat. 

A.V. (mgKOH/g) 
at 3% Cat. 

A. V. (mg KOH/g) 
at 5% Cat. 

Soybean Oil 0.10 0.10 0.10 
After Palmitic 
Acid Addition 

91.73 91.73 91.73 

After Solution 
Addition 

8.96 6.92 7.80 

0.25 9.18 7.15 5.35 
0.50 8.89 5.49 6.61 
1.00 8.09 5.60 6.45 
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Figure 5.11: Effect of ethanol on acid value for 20% palmitic acid test 

100 

90 # 

80 

70 
g 

I60 
m 50 

J 40 

^ 30 

20 

10 

0 t 

Test Condition: 
FFA Level: 40% 
Molar Ratio: 6:1 
Reaction Temperature: 75°C 

0.0 

$ 
0.2 

* 
0.4 0.6 

Time (h) 
0.8 

. 1% Cat. 

.3% Cat. 

.5% Cat. 

1.0 1.2 

Figure 5.12: Effect of ethanol on acid value for 40% palmitic acid test 
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formation of soap will prevent the separation of the ester from the glycerin and also reduce 

the ester conversion rate. Work to be presented later shows that this limit should be 0.5% 

FFA for at least one alkaline catalyst, and this is supported by other researchers [44, 61]. 

However, the work presented here is based on the initial assumption that the acid catalysis 

must decrease the acid value of the mixture to less than 2 mg KOH/g. It will be shown that 

this can be accomplished with a 2-step process. When alcohol reacts with the FFA in the 

acid-catalyzed esterification process, water is formed. As mentioned earlier, the presence of 

water in the transesterification reaction greatly decreases the ester conversion. Therefore, the 

water produced in the mixture must be removed before the reaction will continue. This can 

be accomplished by adding alcohol and acid to the high FFA feedstock as a first step. Then 

after stirring for an hour at 60°C, the mixture is allowed to settle and an alcohol-water 

fraction rises to the top. This alcohol-water fraction can be removed and additional alcohol 

and acid added as a second step. 

The effect of molar ratio, reaction time, and acid catalyst amount on the acid value of 

the mixture was determined for a 2-step reaction at 60°C. The general procedure for this 2-

step reaction was as follows. After the palmitic acid was melted and mixed with the soybean 

oil at 60°C, the solution of sulfuric acid in methanol was added while stirring. The sulfuric 

acid and methanol amounts were based on the FFA level in the mixture. This is a different 

procedure than was used for the experiments described in the previous sections. Since the 

alcohol and catalyst are only reacting with the FF As it seemed more logical to base the 

amounts of the reactants on the FF As instead of the total amount of oil-FFA mixture. After 

the required reaction time, the mixture was allowed to settle in a separatory funnel overnight. 

Then, the oil and ester mixture was separated from the water and excess alcohol which were 



www.manaraa.com

98 

present together as a separate phase. After measuring the new acid value of the oil and ester 

mixture, it was reheated to 60°C and a second batch of sulfuric acid in methanol was added. 

This time, the sulfuric acid and methanol amounts were based on the FFA level remaining in 

the mixture after the first step. Again, after the reaction time was complete, the mixture 

settled overnight and the excess alcohol and water were removed. 

After determining the best strategy for reducing the acid value of the mixture to less 

than 2 mg KOH/g, the reaction process was continued with alkaline-catalyzed 

transesterification. In this step, the amounts of alcohol and alkaline catalyst were based on 

the fraction of unreacted oil in the mixture. The variables affecting the completeness of the 

reaction were then determined for the alkaline catalyst transesterification. After this third step 

was completed, the ester was separated from the glycerin in a separatory funnel and washed 

to remove the soap and catalyst in the mixture. Then, about 50 ml of glycerin were added to 

the ester to remove the mono- and diglycerides and then the ester was washed with water two 

more times to remove any residual free glycerin. Finally, the completeness of the reaction 

was measured using the total remaining glycerin as described earlier. 

5.2.2.1. Effect of Molar Ratio, Catalyst Amount, and Reaction Time in First Step 

The molar ratio of alcohol to FFA is one of the most important factors that influences 

the reduction of the acid value of the mixture. For the stoichiometric reaction, 1 mole of 

alcohol is required per mole of FFA to convert the FFA to ester. In reality, the molar ratio 

should be higher than the theoretical ratio to drive the reaction to completion. To investigate 

the effect of molar ratio, three different molar ratios, 6:1, 8:1, and 10:1, were selected. To 

understand the effect of catalyst amount, four different catalyst amounts, 3%, 5%, 10%, and 
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15%, were selected. In the calculation of molar ratio and catalyst amount, the weight of FFA 

in the mixture was taken as the base for the catalyst percentages. Each reaction was run for 

30 minutes at 60°C. The changes in the acid value of the mixture for the first step reaction are 

shown in Table 5.13 and Figure 5.13. As seen in the table and figure, the FFA level in the oil 

was strongly affected by the molar ratio of alcohol to oil. A higher molar ratio gave a much 

larger decrease in the acid value of the feedstock. If a lower molar ratio is used, much more 

time was required to reach an acceptable FFA level of the feedstock. The acid catalyst 

amount was also very effective in decreasing the acid value of the mixture. 

To understand the effect of reaction time, the acid value was measured at four 

different times, 0.25, 0.50, 0.75, and 1.00 hours, for a 5% catalyst amount at 60°C. The 

changes in the acid value of the mixture are shown in Table 5.14 and Figure 5.14. The acid 

value for this case of 20% FFA was actually reduced to less than 2 mg KOH/g after I hour 

with the 10:1 molar ratio of methanol to FFA. While these data indicated that it was possible 

to reduce the FFA level the required amount with a single pretreatment step, it was decided 

that a lower molar ratio of alcohol and shorter time would be more cost effective so a second 

pretreatment step was investigated. 

5.2.2.2. Effect of Molar Ratio, and Reaction Time in Second Step 

To investigate the effect of the molar ratio on the second step reaction, three mixtures 

were prepared with a 20% palmitic acid solution in soybean oil that had been reacted with 

5% sulfuric acid solution in 6:1, 8:1, and 10:1 molar ratios for the first step reaction. The first 

step reaction time was selected to be 30 minutes. After settling in the separatory funnel, the 

alcohol-water mixture was removed and the acid values of the remaining parts were 
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Table 5.13: Effect of catalyst amount on acid value of the synthetic mixture at different 
molar ratio and 30 minutes reaction time 

Catalyst 
A.V. (mgKOH/g) 
at 6:1 Molar Ratio 

A. V. (mg KOH/g) 
at 8:1 Molar Ratio 

A.V. (mgKOH/g) 
at 10:1 Molar Ratio 

Soybean Oil 0.10 0.10 0.10 
After Palmitic 
Acid Addition 

41.33 41.33 41.33 

3% H2S04 14.49 11.54 7.15 
5% H2SO4 11.54 8.31 5.76 

10% H2SO4 6.34 3.92 2.40 
15% H2SO4 6.56 4.28 1.37 

45 
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Figure 5.13: Effect of catalyst amount on acid value of the synthetic mixture 
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Table 5.14: Effect of reaction time on acid value of the synthetic mixture at different 
molar ratio and 5% catalyst amount 

Reaction Time 
(hours) 

A.V. (mg KOH/g) 
at 6:1 Molar Ratio 

A. V. (mg KOH/g) 
at 8:1 Molar Ratio 

A.V. (mgKOH/g) 
at 10:1 Molar Ratio 

Soybean Oil 0.10 0.10 0.10 
After Palmitic 
Acid Addition 

41.33 41.33 41.33 

0.25 14.45 11.49 7.68 
0.50 11.54 8.31 5.76 
0.75 10.10 5.80 3.02 
1.00 8.85 4.10 1.95 

45 
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Figure 5.14: Effect of reaction time on acid value of the synthetic mixture 
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measured. The acid values of the mixtures for the 6:1, 8:1, and 10:1 molar ratios were 11.94, 

8.58, and 6.34 mg KOH/g, respectively, at the end of the first step. These values are very 

close to the values given in Table 5.14. Then, these samples were used in the second step 

reaction to investigate the effect of the second step molar ratio. In the second step reaction, 

the sulfuric acid and methanol amount were based on the FFA level remaining in the mixture 

after the first step. For each test, the molar ratio was varied up to 15:1 to reduce the acid 

value of the oil mixture to less than 2 mg KOH/g. The changes in the acid value of the 

mixture are shown in Table 5.15 and plotted in Figure 5.15. As stated in the previous section, 

the FFA level in the oil was strongly affected by the molar ratio of alcohol to oil and the 

reaction time. However, it was noted that only one case had achieved the 2 mg KOH/g target 

and it required what was believed to be an excessive amount of methanol. To conserve 

methanol, longer reaction times for the pretreatment steps were investigated. 

When the reaction time was extended to I hour at the first step for the 10:1 molar 

ratio, the acid value of the mixture decreased to 2.87 mg KOH/g as shown in Table 5.16. 

Using samples from this first step, the reaction time was also extended to 1 hour in the 

second step and the second step molar ratio was varied from 6:1 to 35:1. This time, the acid 

value of the mixture decreased to less than 2 mg KOH/g even with the 6:1 molar ratio in the 

second step as can be seen in Table 5.17 and Figure 5.16. This approach appeared to provide 

a robust process that could achieve the targeted acid value with sufficient margin to allow for 

property variations in the feedstock. 
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Table 5.15: Effect of molar ratio in second step for 30 minutes reaction time 

Methanol 
Molar Ratio 

A. V. (mg KOH/g) after 
6:lMolar Ratio in 1st 

Step Reaction 

A. V. (mg KOH/g) after 
8:1 Molar Ratio 

in 1st Step Reaction 

A.V. (mgKOH/g) 
after 10:1 Molar Ratio 
in 1st Step Reaction 

Before 2nu Step 11.94 8.58 6.34 
2nu Step Molar 

Ratio 2:1 
6.34 - -

2n" Step Molar 
Ratio 4:1 

5.67 - -

2"° Step Molar 
Ratio 6:1 

5.44 3.65 2.76 

2no Step Molar 
Ratio 8:1 

5.04 3.20 2.35 

2nu Step Molar 
Ratio 10:1 

- 2.76 2.31 

2nu Step Molar 
Ratio 15:1 

2.98 2.31 1.86 

14 
Test Condition: after 6:1 Methanol Molar Ratio 
Sulfuric Acid Amount: 5% 

12 after 8:1 Methanol Molar Ratio Reaction Temperature: 60"C 
Reaction Time: 30 Minutes 

after 10:1 Methanol Molar Ration 
10 

8 

6 

4 

2 

0 

12 14 8 10 16 6 2 4 0 

Molar Ratio 

Figure 5.15: Effect of molar ratio in second step for 30 minutes reaction time 
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Table 5.16: Effect of reaction time on the acid value of the mixture in l" step 

Reaction Time (hours) A. V. (mg KOH/g) at 10:1 Molar Ratio 

0.50 6.34 
1.00 2.87 

Table 5.17: Effect of molar ratio on the acid value of the mixture in 2nd step for 1 hour 
reaction 

Methanol Molar Ratio in Ta Step A. V. (mg KOH/g) after 10:1 Molar Ratio 

Before 2nd Step 2.87 
6:1 1.64 

8:1 1.55 

10:1 1.41 
15:1 1.19 
20:1 0.96 
25:1 0.87 
30:1 0.74 
35:1 0.52 

3.5 -
Test Condition: 
Sulfuric Acid Amount: 5% 
Reaction Temperature: 60°C 
Reaction Time: I Hour 

g - A.V. (mg KOH/g) after 10:1 Molar 
Ratio 

Recommended Maximum Acid Value 
for Transesterification 

3.0 

2.5 

2.0 

1.0 

0.5 

0.0 

10 15 20 25 5 30 35 40 0 
Molar Ratio 

Figure 5.16: Effect of molar ratio on the acid value of the mixture in 2nd step for 1 hour 
reaction 
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5.2.2.3. Effect of Acid Value on Alkaline-Catalyzed Transesterification 

After the acid value of the high FFA oil was reduced to less than 2 mg KOH/g in the 

2-step reaction, the reaction process was continued with alkaline-catalyzed 

transesterification. In this process, the amounts of alcohol and alkaline catalyst were based on 

the amount of unreacted oil in the mixture. An alkaline-catalyzed transesterification reaction 

was run using the sample which had the initial acid value of 1.86 mg KOH/g with a 6:1 

molar ratio of methanol and 1% alkaline catalyst (KOH). However, the total glycerin amount 

was measured to be 0.29%. This total glycerin amount was too high to meet the total glycerin 

amount specification. Therefore, five other samples with initial acid values ranging from 1.19 

to 0.52 mg KOH/g were subjected to the alkaline-catalyzed transesterification reaction. A 6:1 

molar ratio of methanol and 1% alkaline catalyst (KOH) were used. An additional amount of 

KOH was added to neutralize the residual FFA in the oil mixture. The reaction continued at 

room temperature for 8 hours. After this third step was completed, the ester was separated 

from the glycerin in a separatory funnel and water washed to remove the soap and catalyst in 

the mixture. Then, glycerin was added to the ester and stirred to extract mono- and 

diglycerides from the ester and the ester was water washed two more times to remove 

residual glycerin in the ester. Finally, the completeness of the reaction was measured using 

A.O.C.S Official method Ca 14-56. The total glycerin measured in the ester and the specific 

gravity of the ester are shown in Table 5.18 and plotted in Figure 5.17. The yield shown in 

Table 5.18 was calculated by dividing the final weight of ester by the weight of oil/FFA 

mixture at the beginning. 

The American Society for Testing and Materials is currently considering a standard 

for biodiesel that would require the total glycerin to be less than 0.24%. Our study showed 
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that to produce ester which met this total glycerin requirement, the initial acid value of the oil 

should be 1 mg KOH/g (0.5% FFA) or less for a 6:1 molar ratio of methanol and 1% KOH 

catalyst. Using more KOH catalyst or a higher molar ratio of methanol could potentially 

reduce the total glycerin or make the reaction more tolerant of FF As. References [37, 44] 

confirm our results. Results to be reported later show that another catalyst, sodium 

methoxide, is more tolerant of FFAs than KOH. 

Table 5.18: Effect of acid value on total glycerin and specific gravity 

A.V. (mgKOH/g) Total Glycerol (%) Spe. Gravity Yield (%) 
1.19 0.25 0.8767 90.76 
0.96 0.23 0.8758 89.63 
0.87 0.23 0.8757 90.23 
0.74 0.22 0.8758 87.78 
0.52 0.22 0.8758 88.20 

0.8768 

0.8766 

0.8764 

2 
" 0.8762 

£ 
* 0.8760 

Test Condition: = ^— 
Reaction Temperature: Room ~9~ Specific Gravity 
Reaction Time: 8 Hours Total Glycerin (%) 

0.8758 b 

0.245 

0.240 

0.235 .5 

0.230 U 

0.8756 0.215 

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

A.V. (mg KOH/g) 

Figure 5.17: Effect of acid value on total glycerin and specific gravity 
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5.2.3. Summary of the Preparation of Methyl Ester from Material with High FFA 

One of the objectives of this project was to reduce the FFA level of the feedstock to 

less than 1% (acid value = 2 mg KOH/g) using an acid catalyst. However, when alcohol 

reacts with the FFAs in the acid-catalyzed esterification process, water is formed and inhibits 

the reaction. Therefore, the water produced in the mixture must be removed before the 

reaction will continue. The approach developed in this study to convert a high FFA feedstock 

was to use acid catalysis to convert the FFAs to esters, a process that is relatively fast. Then 

the water is removed with the alcohol when the mixture is allowed to separate. Additional 

alcohol and acid catalyst can then be added to continue the process. Elimination of the FFA 

may require multiple steps. Then, additional alcohol and alkaline catalyst are added to 

complete the process. 

The following conclusions can be drawn from this portion of the study of 

transesterification using synthetic mixtures with high FFAs. 

1. Current work indicates that the acid catalysis can decrease the acid value of the synthetic 

mixture to less than 2 mg KOH/g with a 2-step process. 

2. Using the 2-step acid-catalyzed pretreatment followed by an alkali-catalyzed final 

reaction, the transesterification reaction may be completed in much less time compared 

with acid-catalyzed transesterification alone. 

3. The FFA level of the feedstock is strongly affected by the molar ratio of alcohol to oil. In 

acid-catalyzed esterification, a higher molar ratio is required to decrease the acid value of 

the feedstock. If a lower molar ratio is used, the FFA level of the feedstock requires much 

more time to reach acceptable levels. 



www.manaraa.com

108 

4. Increasing the acid catalyst amount is very effective in decreasing the acid value of the 

mixture. In the first step, at a 10:1 molar ratio for a 30 minutes reaction time, the acid 

value of the mixture with 20% palmitic acid was reduced to 1.37 mg KOH/g and 7.15 mg 

KOH/g for 15% and 3% acid catalyst, respectively. The FF A level may be reduced using 

no catalyst but long times are required. 

5. Ethanol, which has a higher boiling temperature than methanol, decreased the FF A level 

of the synthetic mixture faster than methanol. The higher reaction temperatures may be 

the reason for this difference. 

6. With KOH as the alkaline catalyst, it was found that 1 mg KOH/g (0.5% FFA) was a 

better target for acid value reduction. After decreasing the acid value of the feedstock to 

less than 0.5% FFA level, the alkaline-catalyzed transesterification gives good ester 

conversion. The biodiesel produced met the total glycerin specification. 

5.3. Preparation of Methyl Esters from Yellow Grease 

The next task of this study was to prepare methyl esters from actual yellow grease to 

validate the methods developed using the simulated high FFA feedstock. The yellow grease 

was obtained from the Simonsen rendering plant in Quimby, Iowa. The first step in 

processing this material was to filter out the insoluble materials (such as meat and bone 

particles) at around 55°C or 60°C. Then, the two step acid-catalyzed reaction described 

earlier was applied to the feedstock to reduce its acid value to less than 2 mg KOH/g. 

Rendering plant feedstock typically has an initial FFA level between 5 and 25% FFA. The 

specific fat analyzed for this project had an acid value of 25.15 mg KOH/g which 

corresponds to FFA level of about 12%. The fatty acid distribution of the yellow grease is 
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shown in Table 5.19. For the yellow grease used, the saturated palmitic and stearic acid 

amounts were 21.75% and 12.05%, respectively. The large amount of saturated fat implies 

that the fat is more stable against oxidation than an unsaturated oil such as soybean oil and 

more saturated oils and fats produce higher cetane number fuel. However, this high fraction 

of saturated fat also means that the fat was solid at room temperature. 

The esterification process was repeated for different alcohol molar ratios, amounts of 

acid catalyst, and reaction times at 60°C. After the acid value was reduced to less than 2 mg 

KOH/g, the transesterification reaction was continued with the alkaline catalyst at room 

temperature for 8 hours. The completeness of the reaction was measured using A.O.C.S 

Official method Ca 14-56 as before. The following sections provide the results of these tests 

with yellow grease. 

Table 5.19: Fatty acid composition of the yellow grease and soybean oil 

Product 
Carbon C lain (%)* Unknown 

Components 
Sat. 
(%) 

Product 
C14:0 ClS:0 C16:0 C16:l CI 7:0 CI 8:0 C18:l C18:2 C18.3 C20:0 

Unknown 
Components 

Sat. 
(%) 

Soybean 
Oil - - 10.29 - 0.11 4.28 21.55 53.68 8.16 0.34 0.91 15.22 

Yellow 
Grease 1.73 0.23 21.75 4.45 0.56 12.05 40.61 11.03 1.38 0.19 1.39 36.51 

•Measured by Woodson-Tenent Laboratories, Inc., Des Moines, LA. 

5.3.1. Effect of Molar Ratio and Reaction Time on the Acid Value of Yellow Grease in 
First Step and Second Step 

After filtering the yellow grease at 55-60°C, a 5% sulfuric acid solution with an 8:1 

molar ratio of methanol, based on the FFA level, was added. In the calculations, the 

molecular weight of FFA was assumed to be the same as the molecular weight of palmitic 

acid. The reaction was continued for 30 minutes at 60°C. After settling overnight and 
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separating the alcohol-water mixture on the top, the acid value of the fat-ester mixture was 

measured to be 14.63 mg KOH/g. This value was much higher than was expected based on 

the work described earlier with the synthetic high FFA mixtures and was too high for the 

reaction to be continued for the second step. Therefore, the first step was repeated with the 

molar ratio increased to 20:1 and the reaction time increased to 1 hour. At this time, the acid 

value of the oil mixture was measured to be 5.22 mg KOH/g after the first step reaction as 

seen in Table 5.20. 

After obtaining an acceptable acid value in the first step with a 20:1 molar ratio, 5% 

sulfuric acid, and 1-hour reaction time, the reaction was continued for the second step at 

three different molar ratios with 5% sulfuric acid for 1 hour. The changes in the acid value of 

the mixture are shown in Table 5.21. When the molar ratio was increased, the acid value of 

Table 5.20: Effect of molar ratio and reaction time on acid value in first step and 
comparison with synthetic mixture 

Methanol 
Molar Ratio 

Reaction Time 
(hours) 

A. V. for Yellow Grease 
(mg KOH/g) 

A. V. for Synthetic Mixture 
(20% Palmitic Acid) 

(mg KOH/g) 

Before Test - 25.15 41.33 

8:1 0.5 14.63 8.31 

20:1 1.0 5.22 -

Table 5.21: Effect of molar ratio on acid value in second step at 5% catalyst amount 

Methanol 
Molar Ratio 

Reaction Time 
(hours) 

A.V. 
(mg KOH/g) 

Before Test - 5.22 

20:1 1.0 1.64 

30:1 1.0 1.19 

40:1 1.0 0.74 
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the mixture decreased to as low as 0.74 mg KOH/g with a 40:1 molar ratio of methanol to 

FFA. These methanol amounts for the first and second steps are much greater than was 

expected based on the preliminary work with the synthetic high FFA feedstock. As shown in 

Table 5.20, the acid value change of the synthetic mixture with 20% palmitic acid decreased 

from 41.33 mg KOH/g to 8.31 mg KOH/g with an 8:1 molar ratio while the yellow grease 

which started at 25.15 mg KOH/g only decreased to 14.63 mg KOH/g. 

The difference in the effectiveness of the acid catalyst between the synthetic mixture 

and the yellow grease was unexpected. A number of possible reasons for the difference were 

proposed. Animal fat contains some moisture, as well as unknown, insoluble, and 

unsaponifiable material equal to between 1% and 2% of its weight. These compounds may 

effect the reaction results. Initially it was thought that the water in the fat could be inhibiting 

the reaction. However, in the feedstock with 12% FFA, the water amount formed in the 

pretreatment reaction and that initially in the fat were about 0.9% and 0.2%, respectively. So 

the initial water amount was actually quite small compared to that produced by the reaction. 

In addition, the total water amount produced in the pretreatment reaction of the synthetic 

mixture with 20% palmitic acid was about 1.3% water. So the initial water level of 0.2% 

does not seem to be great enough to explain the difference in the extent of reaction. The 

unknown, insoluble, and unsaponifiable material may also affect the pretreatment reaction. 

This material is almost certainly the cause of the interphase material that accumulates 

between the ester and wash water after transesterification with yellow grease. The interphase 

material will be discussed in a later section. 

It was assumed in the synthetic mixture study that palmitic acid is one of the 

dominant fatty acids present in most vegetable oils and animal fats and reacts at the same rate 
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as other fatty acids. However, animal fats also contain large amounts stearic acid (CI8:0), 

oleic acid (C18:l), and linoleic acid (C18:2), as was seen in Table 5.19. The reaction rates of 

these fatty acids could be different than palmitic acid and this would explain the differences 

in the reaction rates between the two feedstocks. However, comparisons of the fatty acid 

distributions of feedstocks and finished esters are always very similar which indicates that 

the reactions do not seem to differentiate between specific fatty acids. The reason for the 

differences between the simulated feedstock and the yellow grease is still under 

investigation. Even though the recipes for the pretreatment that were developed using the 

synthetic feedstock needed to be changed, the parametric studies were still considered to be 

useful since they identified the effects of the variables and made the required changes in the 

process easy to predict. 

5.3.2. Effect of Different Alkaline Catalysts on Transesterification 

To investigate the continuation of the transesterification reaction of the yellow grease 

to completion, an additional quantity of pretreated yellow grease was prepared. The 

pretreatment consisted of a 1-hour reaction time, 5% sulfuric acid amount, and a 20:1 molar 

ratio for the first step, and a 40:1 molar ratio for the second step. Using these mixtures, the 

process was continued with different alkaline catalysts at room temperature for 8 hours. To 

investigate the effect of different catalysts, potassium hydroxide (KOH), sodium hydroxide 

(NaOH), sodium methoxide (NaOCHs), and metallic sodium (Na) were used. The molar ratio 

was 6:1 and the catalyst amount was varied from 0.7 to 0.35% to hold constant the amount of 

pure metal in the catalyst. The molar ratio of alcohol and the catalyst amount were calculated 

for the transesterification based on the initial amount of fat in the yellow grease. Table 5.22 
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also shows the amount of pure metal used in the various catalysts. All samples met the total 

glycerin specification but the metallic sodium gave the best yield as seen in Table 5.22. The 

yield was calculated by dividing the final weight of ester by the initial weight of yellow 

grease. 

Table 5.22: Effect of different catalysts on transesterification 

Molar Ratios & 
Cat. Amount 

Catalyst Amount in 
Transesterification 

Catalyst Amount 
as Metal Base 

Total Glycerol 
m 

Spe. 
Gravity 

Yield 
(%) 

20:1; 40:1 
(5% Cat.) 

l%KOH 0.7% K 0.23 0.8729 74.8 

20:1; 40:1 
(5% Cat.) 

0.5% KOH 0.35% K 0.23 0.8746 74.3 

20:1; 40:1 
(5% Cat.) 

0.61% NaOH 0.35% Na 0.23 0.8741 81.2 

20:1; 40:1 
(5% Cat.) 

0.82% NaOCHj 0.35% Na 0.20 0.8735 80.5 

20:1; 40:1 
(5% Cat.) 

0.35% Na 0.35% Na 0.20 0.8745 82.2 

Our study was extended to investigate the necessity of separation of the alcohol-water 

mixture after the pretreatment process. The water amount created in the pretreatment will be 

diluted by using higher alcohol molar ratios and it would not effect the transesterification 

reaction. Therefore, we used a 30:1 molar ratio with 5% acid catalyst based on the FFA level 

for a 1-hour reaction. Then, the process was continued with alkaline catalyst (1% KOH+ 

neutralization amount) at a 6:1 molar ratio. As seen in Table 5.23, the acid value of the 

mixture before the transesterification reaction was 5.67 mg KOH/g. Although we used some 

extra alkaline catalyst to neutralize the acidity of the mixture, the total glycerin amount met 

the specification but the yield was 71.68%. The reasons for lower yield were probably the 

water in the mixture and more soap formation during the transesterification reaction. 
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Table 5.23: The methyl ester results prepared without separation in acid catalyst test 

Molar Ratios & 
Catalyst Amount 

A.V. 
(mg KOH/g) 

Catalyst Amount in 
Transesterification 

Total Glycerol 
(%) 

Sp. 
Gravity 

Yield 
(%) 

30:1 (5% Cat.) 5.67 1% KOH 0.20 0.8736 71.68 

5.3.3. Summary of the Preparation of Methyl Esters from Yellow Grease 

The primary objective of this study was to prepare methyl esters from yellow grease. 

The 2-step acid-catalyzed reaction developed in the earlier part of the project was applied to 

the feedstock to reduce its acid value to less than 1 mg KOH/g. After the acid value was 

reduced to less than 1 mg KOH/g, the transesterification reaction was continued with several 

alkaline catalysts at room temperature for 8 hours. The completeness of the reaction was 

measured using the A.O.C.S Official method Ca 14-56 as before. 

The following summary can be drawn from the study of biodiesel production from 

yellow grease with high FFA. 

1. The two-step acid catalysis process was successful in decreasing the acid value of the 

yellow grease to less than 1 mg KOH/g but a higher molar ratio and more time were 

required than was expected based on the work with the simulated high FFA feedstock. 

2. A one-hour reaction time for each step of the 2-step acid catalyst process was found to be 

sufficient for yellow grease. 

3. After decreasing the acid value of the mixture the alkaline catalyst transesterification 

gave good ester conversion. All biodiesel produced met the total glycerin specification 

regardless of the catalyst type or amount. 

4. The alkaline catalyst type affects the ester yield and the best yield, 82.2%, was obtained 

with 0.35% metallic sodium. 
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5. The pretreatment reaction may occur in a I-step acid catalysis process without separation 

and at a higher molar ratio. But for this case more excess alkaline catalyst is required to 

neutralize the acid level of the mixture in the transesterification reaction. This type of 

process also reduced the ester yield. 

5.4. Preparation of Methyl Esters from Brown Grease 

To investigate the usefulness of the process developed for yellow grease biodiesel 

production, the study was extended to preparation of methyl esters from actual brown grease 

with 33% FFA. The brown grease was obtained from the Simonsen rendering plant in 

Quimby, Iowa. As with the yellow grease, the first step in processing this material was to 

filter out the insoluble materials (such as meat and bone particles) at around 55°C or 60°C. 

Then, a three step acid-catalyzed reaction was applied to the feedstock to reduce its acid 

value to less than 2 mg KOH/g. The specific fat analyzed for this project had an acid value of 

66.08 mg KOH/g which corresponds to a FFA level of about 33%. In the first two steps, the 

reaction conditions were a molar ratio of 20:1, 5% acid catalyst, and a 1-hour reaction time at 

60°C. In the third step, the molar ratio of alcohol was increased to 40:1 as the catalyst 

percentage and the reaction time remained the same. The sulfuric acid and methanol amounts 

were based on the FFA level in the brown grease. After the acid value was reduced to less 

than 2 mg KOH/g, the transesterification reaction was continued with the alkaline catalyst at 

room temperature for 8 hours. 

To compare a different alcohol type in the pretreatment of feedstock with high FFA, 

ethanol was also used at a 20:1 molar ratio and 5% catalyst for a 1-hour reaction at 75°C. It 

was found that the ethanol and water did not separate after the first step. Therefore the 
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process could not be continued with ethanol. It was later determined that this was due to 

ethanol having a higher solubility in the ester. 

The changes in the acid value of the mixtures are shown in Table 5.24 for three 

separate test runs. As seen in the table, the final values are very close to each other. After 

each step, the acid value of the brown grease mixture decreased to around 16 mg KOH/g, 5 

mg KOH/g and 2 mg KOH, respectively. 

Table 5.24: The acid values (mg KOH/g) of the feedstocks measured after each step 
with 5% catalyst amount and 1 hour reaction time at 60°C 

Methanol Molar Ratio Run 1 Run 2 Run 3 

Before Test 66.08 66.08 66.08 

1st Step (20:1) 16.17 15.72 16.40 

2nd Step (20:1) 5.00 4.52 4.52 

3rd Step (40:1) 1.97 1.92 1.97 

5.4.1. Effect of Catalyst Amount on the Acid Value of Brown Grease 

Three steps of pretreatment were considered to be undesirable. The extra step of 

pretreatment requires more time, more alcohol, and reduces the yield. To investigate whether 

the pretreatment could be accomplished in 2 steps, the work was extended to higher catalyst 

amounts in the pretreatment reaction. When the sulfuric acid catalyst amount was increased 

to 10%, the acid values after the first and second steps reduced to around 5 mg KOH/g and 2 

mg KOH, respectively. The pretreatment consisted of a 1-hour reaction time, 10% sulfuric 

acid amount, and 20:1 molar ratio for the first step, and a 40:1 molar ratio for the second 

step. The changes in the acid value of the mixture are shown in Table 5.25. By increasing the 

acid catalyst amount, very high levels of FFA can be processed with a 2-step pretreatment. 
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Table 5.25: Effect of 10% catalyst amount on the acid value in 2 steps pretreatment 
reaction 

Methanol Molar Ratio Run 1 Run 2 

Before Test 66.08 66.08 

Is' Step (20:1) 5.20 5.10 

2nd Step (40:1) 2.08 1.98 

5.4.2. Effect of Different Alkaline Catalyst and Amounts on Transesterification 

To investigate taking the transesterification reaction of the brown grease to 

completion, samples of pretreated brown grease were prepared using the 3-step pretreatment. 

Using this mixture, the process was continued with different alkaline catalyst amounts of 

sodium methoxide (NaOCHj) at room temperature for 8 hours. As discussed in section 5.3.2, 

NaOCHî was found to be one of the strongest catalysts. NaOCH] also has the advantage that 

it can be purchased, in bulk, already premixed with methanol. This offers considerable safety 

and convenience over KOH which must be measured and dispensed manually. Therefore, 

NaOCHj was selected as the alkaline catalyst for the transesterification reaction. To 

investigate the effect of different catalyst amounts, the percentages of NaOCHj were 0.82%, 

0.41%, 0.21%, 0.1% and 0.05%. The alkaline catalyst amounts were calculated as % alkaline 

catalyst + a neutralization amount. That is, the amount of catalyst added was the percentage 

given above plus an amount needed to neutralize the remaining FFA, assuming one mole of 

sodium methoxide to neutralize one mole of FFA. The alcohol molar ratio was 6:1. The 

molar ratio of alcohol and catalyst amount was calculated in the transesterification based on 

the initial amount of fat in the brown grease. Table 5.26 shows the total and free glycerin, 

specific gravity and yield of the methyl esters prepared. The yield was calculated by dividing 

the final weight of ester by the initial weight of brown grease. 
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In the first run, due to an excessively high catalyst amount, too much soap was 

formed and no separation happened, even after washing two times at the rate of 50% by 

volume of the mixture. As mentioned earlier, if too much catalyst is used in the 

transesterification reaction, it increases the soap formation. More soap emulsifies the mixture 

and causes difficulties in the ester separation and reduces the ester yield. As seen in the table, 

the best result in total glycerin, specific gravity, and yield was obtained with the 0.21% 

catalyst amount. When a lower catalyst than 0.21% was used, the reaction did not go to 

completion, and the ester did not meet the total glycerin specification. The specific gravity 

also started to increase. When the catalyst amount was increased to more than 0.21%, the 

total glycerin amount started to increase, and the yield was reduced due to soap formation. 

Table 5.26: The effect of different catalyst (NaOCHs) amounts on transesterification 

Run Catalyst Total Glycerin Free Glycerin Specific Yield 
No. (%) (%) (%) Gravity (%) 

1 0.82 * * * * 

2 0.41 0.1595 0.0000 0.8757 51.91 
3 0.21 0.1179 0.0000 0.8748 56.39 
4 0.10 0.3257 0.0019 0.8787 55.36 
5 0.05 0.4209 0.0016 0.8794 55.58 
* No separation between glycerin and ester 

Reactant mixtures produced with the 2-step pretreatment were also processed with 

different alkaline catalyst amounts at room temperature for 8 hours. To investigate the effect 

of different catalyst amounts, potassium hydroxide (KOH) with 0.5% and 0.25%, and sodium 

methoxide (NaOCHi) with 0.41% and 0.21% were used. The actual alkaline catalyst amounts 

used were calculated as % alkaline catalyst + the neutralization amount. The alcohol molar 

ratio was 6:1. The results are shown in Table 5.27. 
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When 0.25% KOH was used as an alkaline catalyst in the transesterification, almost 

no reaction was observed. When the catalyst amount was increased to 0.5%, some reaction 

occurred but it was not enough to meet the total glycerin specification for biodiesel. When 

the catalyst changed to NaOCH] at 0.21%, the total glycerin amount, the specific gravity of 

the ester and yield were 0.18%, 0.8748, and 75.1%, respectively. However, a further increase 

of the NaOCH; gave lower yield and higher total glycerin due to more soap formation. It was 

noted that the successful reaction with a 2-step pretreated sample gave a yield (75.1%) that 

was much higher than the highest yield found for the material pretreated with the 3-step 

process. 

Table 5.27: The effect of different catalyst and amounts on transesterification after 2 
steps pretreatment reaction 

Run Catalyst Total Glycerin Free Glycerin Specific Yield 
No. (%) (%) (%) Gravity (%) 
6 0.5 (KOH) 1.91 - 0.8848 56.4 
7 0.25 (KOH) 9.22 - 0.9014 -

8 0.41 (NaOCHs) 0.19 0.004 0.8751 67.0 
9 0.21 (NaOCHj) 0.18 0.002 0.8748 75.1 

5.4.3. Yield Analysis of the Methyl Esters Produced from Feedstock with High FFA 

Due to the low yield after the pretreatment and transesterification reactions, the losses 

during the reactions were investigated. In this section, the sources for the losses in the 

reactions are discussed. 

5.4.3.1. Effect of Pretreatment Step Number and Alkaline Catalyst on the Methyl Ester 
Yield 

As summarized in Table 5.28, the yield was increased when the brown grease was 

pretreated in two steps instead of three. The losses in the final step of either the 3-step or the 
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2-step processes may not be lost if the alcohol mixture is not removed after the last step of 

pretreatment. The small amount of water present in the mixture at this point does not seem to 

affect the reaction. To find the amount of fat and ester lost in the pretreatment, the methanol-

water mixture removed after each step was heated on a hot plate. After evaporating the 

methanol-water mixture, the remaining material was weighed. The fat and ester amounts 

removed in the pretreatment steps are shown in Table 5.28. Apparently, when the methanol-

water mixture was removed at the end of each pretreatment step, it also carried a significant 

amount of fat and ester with it. When the number of steps was reduced from three to two, the 

yield was increased. Therefore, it was determined that a study of the solubility of the fats in 

methanol would be a valuable extension of this study. This subject will be discussed in the 

next section. 

The catalyst amount used in transesterification was another factor that affected the 

low yield. When a very high amount of alkaline catalyst was used in the transesterification, it 

increased the soap amount and the interphase. Interphase was the name given to a middle 

phase that appeared during the washing process between the animal fat ester and the wash 

water. The composition of the interphase is not currently known but it is insoluble in both 

ester and water. Interphase was never observed when processing soybean oil, lard, tallow, or 

the synthetic high FFA feedstock. It apparently originates from unsaponifiable material in the 

yellow and brown grease. After the 4th washing step, the interphase was separated from the 

ester. During the separation, some ester was unavoidably removed with the interphase. The 

amount of interphase material decreased when the number of pretreatment steps was 

decreased from three to two. 

The catalyst type also had an effect on the transesterification of the feedstock. To 



www.manaraa.com

121 

investigate the different catalyst effects potassium hydroxide (KOH) and sodium methoxide 

(NaOCH;) were used. The NaOCHs provided a complete reaction with 0.41% and 0.21%, 

catalyst amounts. At the same conditions the KOH did not give acceptable results with 0.5 

and 0.25% catalyst amounts. These results confirmed that NaOCHj is much more effective 

than KOH. The amount of interphase material decreased when the NaOCH3 catalyst 

percentage was decreased from 0.41% to 0.21%, in the 2-step pretreatment. 

Table 5.28: The losses in pretreatment and transesterification 

Run 
No. 

Catalyst 
% 

Feedstock 
(g) 

Ester 
(g) 

Yield 
(%) 

Interphase 
(g)  

The Loss in Pretreatment Run 
No. 

Catalyst 
% 

Feedstock 
(g) 

Ester 
(g) 

Yield 
(%) 

Interphase 
(g)  I" Step (g) 2" Step (g) 3" Step (g) 

1 0.82 NaOCH3 400 - - 326.18 38.26 20.63 9.85 
2 0.41 NaOCH3 300 151.83 51.91 91.24 26.07 16.87 8.67 
3 0.21 NaOCHj 300 164.95 56.39 84.21 26.07 16.87 8.67 
4 O.lONaOCH, 300 161.94 55.36 85.96 24.96 18.09 5.75 
5 0.05 NaOCHj 300 162.58 55.58 93.20 24.96 18.09 5.75 
6 0.5 KOH 300 163.57 56.40 100.83 31.94 4.74 -

7 0.25 KOH 300 47.21 - 218.80 31.94 4.74 -

8 0.41 NaOCHj 300 200.90 66.97 60.40 31.11 5.23 -

9 0.21 NaOCHj 300 225.36 75.12 37.12 31.11 5.23 -

5.4.3.2. The Effect of Solubility of Methanol in the Oils and Methyl Ester 

To understand the losses in the pretreatment process, the solubility of the reactants in 

methanol was studied as a function of temperature. Soybean oil, lard, yellow grease methyl 

ester (YGME), yellow grease, and brown grease were mixed separately with equal amounts 

of methanol by volume at 60°C for 1 hour. No catalyst was added so no reaction was 

assumed to occur. After mixing, the mixture was placed in a constant temperature bath. Each 

hour the temperature was reduced in 10°C decrements starting with 60°C. At each 

temperature, two equal samples were drawn from the bottom and top of the mixture. Then 

the samples were heated on a hot plate to evaporate the methanol. After evaporation, the 
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percentage of methanol in the lower phase and the upper phase were calculated. Figure 5.18 

represents the solubility of the reactants in methanol at the different temperatures. The 

solubility of methanol in soybean oil and lard was low and about the same for both 

compounds. This indicates that the solubility is not affected by the saturation of the oil or fat. 

However, the solubility of the oil was strongly related to its FFA level and ester amount. 

When the two different oils with different FFA levels (9% and 33%) are compared, it can be 

noted that the solubility of the oil increases for the oil with higher FFA. The solubility of the 

yellow grease methyl ester in methanol was the highest among the samples. These data show 

why the yield decreased when the higher FFA feedstocks were processed. At the higher FFA 

levels, the methanol-water mixture removed during pretreatment was carrying a greater 

Upper Phase (Yellow Grease 9% FFA) Zq- Lower Phase (Yellow Grease 9% FFA) 
Upper Phase (Brown Grease 33% FFA) Lower Phase (Brown Grease 33% FFA) 
Upper Phase (Soybean Oil) Lower Phase (Soybean Oil) 

-20 1 

0 

Upper Phase (Lard) 
Upper Phase (YGME) 

-0- Lower Phase (Lard) 
-X- Lower Phase (YGME) 

20 40 60 80 100 
% Methanol 

Figure 5.18: Solubility of soybean oil, lard, YGME, yellow grease and brown grease in 
methanol 
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amount of fat as well as a significant portion of the methyl ester (YGME) that may have been 

produced. This problem can be addressed by evaporating the methanol and water from the 

material removed during pretreatment and returning the residue to the process stream. 

5.4.4. Summary of the Preparation of Methyl Esters from Brown Grease 

The objective of this part of the study was to demonstrate that methyl esters could be 

produced from brown grease with high FFA. Two different approaches involving three steps 

of pretreatment (with 5% catalyst) and 2 steps of pretreatment (with 10% catalyst) were 

applied to the 33% FFA brown grease to reduce its acid value to less than 2 mg KOH/g. 

After the acid value was reduced to less than 2 mg KOH/g, the transesterification reaction 

was continued with sodium methoxide (NaOCHj) as the alkaline catalyst at room 

temperature for 8 hours. The following summary can be drawn for biodiesel production from 

brown grease with 33% FFA. 

1. The three-step pretreatment process with 5% catalyst amount was successful in 

decreasing the acid value of the brown grease to less than 2 mg KOH/g. 

2. When 10% sulfuric acid was used in the pretreatment reaction, the number of steps was 

reduced from three to two. 

3. After decreasing the acid value of the brown grease, the alkaline catalyst 

transesterification gave good ester conversion and the biodiesels met the total and free 

glycerin specification. 

4. The yield percentage was increased when the number of pretreatment steps was reduced 

from three to two. 

5. It was observed that the alkaline catalyst amount and type affects the transesterification 
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reaction and yield. NaOCHj is much stronger than KOH. The best result was obtained 

with 0.21% NaOCHj in the 2-step pretreatment and yield, total glycerin, and specific 

gravity were 75.12%, 0.1772%, and 0.8748, respectively. 

6. Increasing the number of steps of pretreatment reduces the ester yield due to the 

solubility of the fat and ester in methanol. Recovery of this lost material will be essential 

for maximum process yield. 

5.5. Soap and Catalyst Analysis in Washing Process of the Methyl Esters 

If FF As are present in the feedstock when an alkaline catalyst is used for 

transesterification, they will react with the catalyst to form soap. These soaps are then 

removed in the washing process. The washing process also removes any residual catalyst in 

the ester. To investigate the effectiveness of the washing process, samples from the ester 

phase, the wash water, and the glycerin were collected and the soap and catalyst amounts 

were measured. The test method is described in Appendix C. 

Three different methyl esters were produced from saturated vegetable oil, lard, and 

pretreated yellow grease with 9% FFA level. The percentage and amounts of soap and 

catalyst in the ester, wash water, and glycerin are shown in Table 5.29. When the esters were 

washed, after 3 washing cycles, there was no difference in the soap amount in further 

washing waters. However, a larger soap amount was found in the wash waters of the lard and 

yellow grease esters. When the total soap formation in the reaction was compared, the yellow 

grease methyl ester reaction produced the highest soap amount as seen in the table. Table 

5.29 also shows that most of the soap and catalyst are removed with the glycerin phase. To 

check the accuracy of the measurements, a mass balance was performed on the sodium as 
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shown in Table 5.30. The total amount of sodium (Na) measured in the output was very close 

to the amount of sodium input as catalyst. This confirms that 95.1 - 97.0% of the sodium 

added with the catalyst is removed with the glycerin, 1.6 - 2.5% is removed from the ester in 

the wash water, and 0.27 - 0.33 % remains in the ester after washing. 

Table 5.29: Analysis of the catalyst amount and soap produced in the reaction 

Sample 

Saturated 
Vegetable Oil Lard Yellow Grease 

Sample 
% % % % % % 

Cat. Soap Cat. Soap Cat. Soap 
Ester 0 0.015 0 0.013 0 0.014 

Wash Water - - - - - -

1 0 0.061 0 0.053 0 0.091 
2 0 0.022 0 0.039 0 0.041 
3 0 0.016 0 0.037 0 0.026 
4 0 0.015 0 0.036 0 0.020 
5 0 0.015 0 0.034 0 0.020 
6 0 0.015 0 0.034 0 0.020 

Glycerin 4.327 2.172 3.962 3.547 2.203 6.904 

Table 5.30: Mass balance of the catalyst used in the transesterification reaction 

Saturated Vegetable 
Oil 

Lard Yellow Grease 

Catalyst Catalyst Catalyst 
Amount % Amount % Amount % 

Total Input of NaOCH} 3.280 g - 3.280 g - 3.280 g -

Total Input of Na 1.396 g 100 1.396 g 100 1.396 g 100 
Methyl Ester 0.0046 g 0.33 0.0039 g 0.28 0.0037 g 0.27 
Glycerin 1.3540 g 97.0 1.3269 g 95.1 1.3423 g 96.2 
Wash Water 0.0217 g 1.55 0.0348 g 2.49 0.0327 g 2.34 
Total output of Na 1.3803 g 98.88 1.3656 g 97.87 1.3787 g 98.81 
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5.6. Test System Setup for Pilot Plant Scale Biodiesel Production 

After finding the best strategy for the small-scale transesterification of feedstocks 

with high FFA, a pilot plant was designed to implement the strategy. The pilot plant has been 

assembled at the Iowa Energy Center's Biomass Energy Conversion Center (BECON) in 

Nevada, Iowa. The front and back views of the pilot plant are shown in Figures 5.19 and 

Figure 5.20, respectively. This pilot plant has two units: a pretreatment unit to reduce the 

FFA level of the yellow grease to less than 1% and a main reaction unit for 

transesterification. When a low FFA feedstock such as soybean oil is used, only the main 

reaction unit is needed. When a high FFA feedstock is used, it must pass through the 

pretreatment unit before entering the main reaction unit. The design and equipment of the 

pilot plant are described below. 

Half-inch stainless steel tubing was used to connect all components for the entire pilot 

plant. To get flexibility in some places, Vi inch teflon-lined tygon tubing was used. For both 

units, an air-operated pump was used to pump methanol. Methanol was supplied directly 

from 55-gallon drums and one Vi hp pump was used to drain waste water and alcohol mixture 

from the tank. 

5.6.1. Pretreatment Unit in the Pilot Plant 

A schematic of the pretreatment unit is shown in Figure 5.21. Warm feedstock with 

high FF As (yellow grease or brown grease) can be delivered to the BECON facility by truck. 

Separate 500-gallon, cone bottom, insulated storage tanks are available for the vegetable oil 

and animal fat feedstocks. Since the animal fat feedstock solidifies at room temperature, it 

needs to be heated before pretreatment. The tank of animal fat feedstock can be kept 
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at 55-60°C using a 1200 watt/480 volts heater, a 1/3 hp recirculating pump, and a thermostat. 

A 20-micron cellulose filter is used to remove insoluble materials, such as meat and bone 

particles, from the yellow or brown grease. The pump, identified on the schematic as P 2p 

transfers the feedstock to the 9-gallon stainless steel pretreatment reaction tank. A 

thermocouple mounted in the reaction tank checks the reaction temperature during the 

pretreatment process. A load cell weighs the amount of feedstock transferred to the reaction 

tank. The alcohol solution with acid catalyst is prepared and added to the reaction tank using 

the air-operated pump (P 1). A Vi hp pump (P 3p) is used for recirculating and transferring 

the mixture to the settling tanks. The temperature of the mixture during pretreatment needs to 

be around 60°C. For this purpose, an insulated, 3 inch diameter by 5 feet long, stainless steel 

heating pipe with a 3000 watt/480 volts heater is used. 

When the FFA reacts with alcohol to form ester, water is formed in the products. 

Therefore, it is necessary to separate the water from the pretreated material since it will 

inhibit further reaction. A 120-gallon stainless steel settling tank is used to separate the 

alcohol-water mixture from the feedstock after pretreatment. Level switches mounted in the 

tanks control solenoid valves to drain the alcohol-water mixture to a 50-gallon waste water 

tank. For the second step of pretreatment, another pump (P 4p) transfers the feedstock from 

the first pretreatment settling tank back to the pretreatment reaction tank, and additional 

methanol-acid mixture is added. Again, pump P 3p recirculates the mixture for 1 hour at 

60°C and then pumps it to the second settling tank which is a 100-gallon stainless steel tank. 

After reducing the acid level of the feedstock to less than 1%, it is transferred from the 

second pretreatment settling tank to the main reaction tank for transesterification using pump 

P4p. 
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5.6.2. Transesterification (Main) Unit in the Pilot Plant 

A schematic of the main reaction unit is shown in Figure 5.22. After soybean oil is 

purchased and delivered to the BECON facility, it is stored in the 500-gallon, cone bottom 

tank at room temperature. If soybean oil is used for transesterification reaction, the tank's 1/3 

hp pump (P 2) transfers the soybean oil to the main reaction tank. If pretreated high FFA 

feedstock will be used for the transesterification, then pump P 4p is operated. The main 

transesterification reaction takes place in a 70-gallon, stainless steel reaction tank with a '/z hp 

explosion-proof mixer, which has a fixed speed of 1750 rpm. A load cell, which was 

mounted on one leg of each reaction tank, measures the reactant amounts. Methanol is added 

to the reaction tank using the air-operated pump P 1. After preparing the alcohol solution 

with the catalyst, it is added to the reaction tank. Then, the reactants mix for 8 hours, and the 

mixture is transferred to a 130-gallon cone bottom tank for glycerin separation and ester 

washing. A load cell mounted on the bottom of one leg of the tank measures the glycerin 

amount, the washing water amount, and the amount of ester produced. A Micro Motion 

brand density meter installed at the exit of the separation tank quantifies the glycerin, water, 

and ester in the separation processes. A pump (P 4) transfers the glycerin to the glycerin 

storage container, a 55-gallon stainless steel tank and then the ester is washed to remove 

residual catalyst and soap in the ester. 

The hardness of the city water of Nevada, Iowa has been measured to be 27.4 grains 

per gallon by MVTL Laboratories, Inc., Nevada, Iowa. For better washing, a water softener 

and a 50-gallon, 4500 watt/110 volts water heater were used to prepare the wash water. Four 

sprinklers were mounted on the top of the tank so that the wash water droplets are distributed 

uniformly over the surface of the ester. The wash water temperature was set to be 60°C. 
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The same pump (P 4) is used to recirculate the washing water as to transfer it to the 

waste outlet, and move the finished ester to the storage tanks. Two separate storage tanks, a 

250-gallon stainless steel tank and a 180-gallon stainless steel tank, are used for the biodiesel 

from high FF A feedstock and the biodiesel from vegetable oil, respectively. Another pump 

(P 5) is used to transfer the biodiesel to external storage tanks. The esters are filtered with 20-

micron cellulose filters when pumped to the external storage tanks. 

5.7. Pilot Plant Operation and Analysis 

The pilot plant described in the previous section was used for preparation of large 

amounts of methyl esters from soybean oil and rendered grease. The pilot plant process was 

validated using soybean oil, yellow grease, and finally brown grease. The following sections 

describe the adaptation of the small-scale processes to the large-scale biodiesel production in 

the pilot plant. This adaptation process will be presented through the use of 3 specific case 

studies of the use of the pilot plant to produce biodiesel from different feedstocks. 

5.7.1. Large Scale Biodiesel Production from Soybean Oil (Case Study 1) 

The first case study will describe using the pilot plant to produce biodiesel from 

soybean oil. To prepare biodiesel from soybean oil in the pilot plant, the following procedure 

was used. One percent KOH was dissolved in methanol at room temperature in the main 

reaction tank. The catalyst amount was based on the weight of vegetable oil and the molar 

ratio of alcohol to oil was 6:1. Then, the vegetable oil was added to the reaction tank at room 

temperature. The transesterification process was continued at room temperature for 8 hours. 

The reaction completion was monitored and the data for soybean oil are shown in Table 5.31 

and Figure 5.23. As seen in Table 5.31, the reaction completion did not change very much 
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Table 5.31: Total glycerin and specific gravity change during the transesterification of 
soybean oil 

Time (hours) Total Glycerin (%) Specific Gravity 
0 11.07 0.9212 
1 1.09 0.8849 
2 0.79 0.8843 
3 0.69 0.8834 
4 0.62 0.8832 
5 0.56 0.8825 
6 0.54 0.8825 
7 0.53 0.8826 
8 0.52 0.8826 
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Figure 5.23: Total glycerin and specific gravity change during the transesterification of 
soybean oil 
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after 4 hours. However, the total glycerin amount was also too high at the end of the reaction. 

Fuel quality biodiesel needs to have a total glycerin level that is less than 0.24%. 

The ingredient amounts for transesterification of one batch are shown below. 

For One Batch: 

181.18 kg soybean oil 

39.40 kg methanol (6:1 molar ratio) 

1.81 kg KOH (1%) 

After 8 hours, the mixture was pumped to a separation tank, and the ester and 

glycerin layers were allowed to separate in the tank overnight. The glycerin that collected at 

the bottom of the tank was pumped to the glycerin tank and the methyl esters were washed 

four times with softened warm water (40°C) to remove the excess alcohol and catalyst. Each 

washing required 30 minutes and the amount of water was 50% by volume of the ester. After 

extracting the wash water, the ester was pumped to the storage tank. The completeness of the 

reaction was measured using the method described earlier but the samples did not meet the 

total and free glycerin specifications. Therefore, the biodiesel was reacted again with an 

alcohol solution with 0.1% KOH, and washed four times again. This time the alcohol amount 

used was at a 3:1 molar ratio based on the initial amount of oil. The specific gravity of the 

ester at room temperature was measured after each batch and is also shown in Table 5.32. 

After the second step of transesterification, the total glycerin level of the biodiesel was very 

low and easily met the 0.24% specification. 

The soybean oil used in the transesterification described above was partially refined 

soybean oil containing some residual phosphorus, except for the oil used in the third run. To 

investigate whether a refined oil would behave differently in the transesterification reaction, 
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30 gallons of soybean oil was purchased from the local food store. As shown in the table, the 

third run has a higher yield than those of others. The reason was probably that in the third run 

the soybean oil was refined and bleached, while the first two runs used partially refined 

soybean oil containing phosphorus. Freedman et al. [44] has stated that the phosphorus in the 

oil leads to catalyst destruction and reduces the ester yield. However, the total glycerin level 

with the refined and bleached oil was still too high to meet the specification without an extra 

transesterification reaction. 

In run 4, a different method was used for the two-part transesterification reaction. 

One fourth of the methanol solution was held back to use later. Then, the vegetable oil at 

room temperature was added. The reactants were mixed for 4 hours at atmospheric pressure 

and room temperature. After 4 hours, the mixture was settled for 30 minutes and the glycerin 

that collected at the bottom of the reactor was pumped to the separation tank. Then the 

methanol solution that had been held back was added, and the reaction was continued for 

another 3 hours. This procedure gave very low levels of total glycerin as shown in Table 

5.32. This showed that fuel quality biodiesel could be produced using the same quantity of 

methanol and catalyst and the same amount of time as had been expected from the small-

scale testing. However, it did not explain why the pilot plant was not able to provide low 

total glycerin levels with a single reaction. 

5.7.2. Large Scale Biodiesel Production from Yellow Grease (Case Study 2) 

This section describes a case study on the use of the pilot plant to produce biodiesel 

from yellow grease. The first step in the processing of yellow grease was to filter out the 

insoluble materials, such as meat and bone particles, at around 55-60°C. Then, the two step 
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Table 5.32: Measured values of the biodiesel prepared from soybean oil 

Run No. Reaction Total Glycerol (%>) Free Glycerin (%) Spe. Gravity Yield (%) 

1 
After lsl 0.50 - - -

1 
After 2"" 0.02 0.0144 0.8816 94.6 

2 
After lsl 0.48 - - -

2 
After 2"" 0.03 0.0207 0.8805 94.7 

3 
After 1st 0.52 - - -

3 After 2"° 0.06 0.0207 0.8818 97.2 
4 2 Step 0.07 0.0021 0.8811 94.8 

acid-catalyzed reaction, developed in the earlier part of the project, was applied to the 

feedstock to reduce its FFA level to less than 1%. The specific fat used for this case study 

had an acid value of 18.03 mg KOH/g which corresponds to a FFA level of about 9%. For 

the yellow grease used, the saturated palmitic and stearic acid amounts were 23.24, and 

12.96%, respectively. 

The pretreatment unit in the pilot plant has a 20-kg feedstock capacity for each batch. 

The ingredient amounts at each stage for one batch are shown in Table 5.33. 

After pumping the required amount of filtered yellow grease at 60°C into the 

pretreatment reaction tank, the methanol solution with sulfuric acid was manually added to 

the reaction tank. The first pretreatment consisted of 5% sulfuric acid and a 20:1 molar ratio 

of methanol, based on the measured FFA amount. The mixture was recirculated for one hour 

through the heating pipe, which kept the mixture temperature between 55°C and 60°C. After 

1-hour of reaction the mixture was transferred to the first stage settling tank to separate the 

Table 5.33: Ingredient amounts used in the pretreatment reaction of the yellow grease 
with 9% FFA for one batch 

Reactant 1" Stage Ta Stage 
Feedstock 20 kg 20 kg 
Methanol 4.35 kg 2.13 kg 
Sulfuric Acid 0.087 kg 0.021 kg 
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alcohol-water mixture from the pretreated yellow grease. At the end of the first stage, the 

average acid value of the feedstock was measured to be 4.26 mg KOH/g. 

For the second stage of pretreatment, the lower phase feedstock in the first stage 

settling tank was taken back to the pretreatment reaction tank and additional methanol and 

sulfuric acid solution were added. In this pretreatment stage, the sulfuric acid amount was 

5%, and the molar ratio was 40:1 based on the FFA level. Again, the mixture was 

recirculated for one hour through the heating pipe to keep the temperature between 55°C and 

60°C. After one hour of reaction the mixture was taken to the second stage settling tank. 

Originally, the intent was for the water-alcohol mixture to be separated in the second stage 

settling tank. However, the water formation in this stage was so low (less than 0.1 %) that it 

would not affect the alkaline-catalyzed transesterification reactions. Therefore, the alcohol-

water mixture was not removed before the main transesterification process. 

After pretreatment, the process was continued with the alkaline catalyst (0.82% 

NaOCH] + neutralization amount) at a 6:1 molar ratio of methanol. The FFA level of the 

pretreated yellow grease was measured to be 0.85 mg KOH/g and an additional catalyst 

amount was added to neutralize these FF As. The molar ratio of alcohol and the catalyst 

amount were calculated for the transesterification based on the initial fat amount in the 

yellow grease. The transesterification process occurred at room temperature for 8 hours. 

The ingredient amounts for transesterification of the pretreated yellow grease for one 

batch are shown in Table 5.34. The first column of numbers was based on the assumption 

that the water-alcohol mixture would be removed after the second step of pretreatment. The 

second column reflects the amounts with the water-alcohol mixture retained which was the 

actual process used. 
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Table 5.34: Ingredient amounts for transesterification of pretreated yellow grease for 
one batch 

Amount (kg) 
(If alcohol-water mixture is) 

Reactant removed retained 
Pretreated Yellow Grease 164 176 
Methanol 32.64 32.64 
NaOCH] (0.82%) 1.22 1.22 
NaOCHa (to neutralize) 0.23 0.28 

Samples of the reacting mixture were removed at one hour intervals and analyzed for 

total glycerin to track the progress of the reaction. The results are shown in Table 5.35 and 

Figure 5.24. Most of the reaction occurs in the first hour and the reaction appears to have 

reached equilibrium after 4 hours. 

After the reaction, the mixture was pumped to the separation tank, and the ester and 

glycerin layers were allowed to separate in the tank overnight. However, the separation did 

not occur. Therefore, the mixture was washed four times for 30 minutes with soft warm 

water to remove the glycerin, excess alcohol, and catalyst. For each washing, the amount of 

water was 50% by volume of the ester. After the 4th washing step, the interphase material 

which accumulates between the ester and wash water was separated from the ester. After 

extracting the wash water-glycerin mixture, the ester was pumped to the storage tank. 

As could be seen in Table 5.35, the samples did not meet the total and free glycerin 

specifications. Therefore, the biodiesel was reacted one more time with an alcohol solution 

with 0.1% catalyst, and washed four times again. This time the alcohol amount used was at a 

3:1 molar ratio based on the initial amount of fat in the yellow grease. After this process, the 

biodiesel met the total glycerin specification. The measured values for three separate runs 

after the 2nd reaction step are shown in Table 5.36. 
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Table 5.35: Total glycerin and specific gravity change during the transesterification of 
yellow grease after pretreatment 

Time (hours) Total Glycerin (%) Specific Gravity 
0 10.36 0.9032 
1 1.73 0.8792 
2 1.15 0.8785 
3 0.90 0.8778 
4 0.75 0.8764 
6 0.76 0.8764 
8 0.67 0.8763 

0.905 
Total Glycerin 

-e- Specific Gravity 0.900 

11 

10 

9 

8 0.895 

7 
0.890 
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5 0.885 
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0.880 3 
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0.870 0 

8 9 4 5 7 2 3 6 1 0 

Time (h) 

Figure 5.24: Total glycerin and specific gravity change during the transesterification of 
yellow grease after pretreatment 
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Table 5.36: Measured values of the biodiesel prepared from yellow grease 

Run 
No. 

Reaction 
Total Glycerin 

(%) 
Free Glycerin 

(%) 
Spe. 

Gravity 
Yield 
(%) 

1 
After 1" 0.66 - 0.8756 -

1 
After 2"u 0.22 0.0310 0.8752 82.8 

2 
After 1" 0.67 - 0.8763 -

2 
After 2"u 0.23 0.0392 0.8749 82.3 

3 
After 1M 0.62 - 0.8760 -

3 
After 2"u 0.23 0.0145 0.8748 82.2 

In an attempt to understand the reason for the initially poor conversion in the reaction, 

saturated vegetable oil, lard, and pretreated yellow grease were transesterified under 

laboratory conditions. The saturated vegetable oil (Crisco) and lard were purchased from a 

local store. These tests were conducted to determine whether the higher saturation level of 

the yellow grease was the cause of the incomplete reaction. The saturated vegetable oil and 

lard were expected to be as saturated as the yellow grease if not more saturated. The results 

are shown in Table 5.37. Although the total glycerin levels are somewhat high for these 

feedstocks, all three esters met the total glycerin requirement. Apparently, the saturation level 

of the feedstock was not the cause of the high total glycerin levels noted after one reaction in 

the pilot plant. Moreover, since the total glycerin level of the yellow grease was acceptable in 

the small-scale laboratory tests, the poor conversion of the yellow grease in the pilot plant 

was attributed to a problem of scaling the laboratory process up to the pilot plant size. 

Table 5.37: Transesterification results of different saturated feedstocks 

Type of Total Glycerin Free Glycerin Specific Yield 
Feedstock (%) (%) Gravity (%) 

Yellow Grease 0.24 0.0435 0.8712 92.5 
Lard 0.24 0.0517 0.8678 99.4 

Crisco 0.21 0.0000 0.8750 100.0 
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5.7.3. Effect of Mixing 

One of the main variables effecting the transesterification reaction is the mixing rate. 

In the pilot plant, a high-speed mixer has been used. However, it was observed that in some 

cases, the entire body of the mixture was turning in the reaction tank as a single mass. 

Therefore, the reactants could not mix effectively. This was not a problem in the 

transesterification of feedstocks on the laboratory scale, but poor mixing was apparently a 

problem in the pilot plant-scale transesterification. For better mixing, stationary vanes were 

welded to the inside of the reaction tank which stopped the turning of whole body of mixture 

during the reaction. After the addition of the stationary vanes, one more transesterification 

batch of pretreated yellow grease was prepared. It was observed that the mixing was better 

than the previous runs. The test results are shown in Table 5.38. The total glycerin and yield 

were now almost equivalent to the laboratory scale testing and met the total glycerin 

specification of 0.24%. 

Table 5.38: The effect of mixing on the transesterification of pretreated yellow grease 

Run Total Glycerin Free Glycerin Specific Yield 
No. (%) (%) Gravity (%) 

Before the vanes 0.62 - 0.8760 82.0 
After the vanes 0.23 0.0186 0.8760 90.2 

5.7.4. Effect of Washing Number 

After the glycerin separation, the methyl esters must be washed with water to remove 

the excess alcohol, catalyst, and glycerin. Previous studies of the production of methyl ester 

from soybean oil [14] have shown that after being washed four times, the percentage of soap 

and catalyst in the wash water has stopped changing. However, for methyl ester produced 
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from yellow grease, the test results indicated that washing four times might not be enough to 

meet the glycerin specification. Therefore, the methyl ester produced from yellow grease was 

washed six times at the rate of 50% by volume of the ester. The reason for more washing 

might be due to the lack of separation of the glycerin from the ester after the overnight 

settling. This means that the washing process must remove all of the glycerin from reactants 

instead of only a small fraction. The effect of washing number is shown in Table 5.39. 

Table 5.39: The effect of washing number on glycerin amount and specific gravity of 
methyl ester produced from pretreated yellow grease 

Washing 
Number 

Total Glycerin 
(%) 

Free Glycerin 
(%) 

Specific 
Gravity 

4 Times 0.29 0.124 0.8780 
6 Times 0.23 0.019 0.8760 

5.7.5. Large Scale Methyl Ester Production from Brown Grease (Case Study 3) 

The third case study involved pilot plant-scale biodiesel production from brown 

grease. The brown grease was obtained from the Simonsen rendering plant in Quimby, Iowa. 

The two step acid-catalyzed reaction developed in the earlier part of this study (10% sulfuric 

acid case) was applied to the feedstock to reduce its FFA level to less than 1%. As was 

discussed in section 5.4.2, NaOCH3 was found to be capable of tolerating almost 1% FFA 

level in the transesterification reaction. The brown grease analyzed for this study had an acid 

value of 79.20 mg KOH/g which corresponds to a FFA level of almost 39.2%. The fatty acid 

distribution of the brown grease is shown in Table 5.40. The saturated palmitic and stearic 

acid amounts were 22.83 and 12.54%, respectively. For comparison, the FFA distributions of 

the yellow grease with 9% FFA and soybean oil considered in the first two case studies are 

also given in Table 5.40. 
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As seen in Table 5.40, the saturated fatty acid percentages in the ester after 

transesterification were almost the same as the respective feedstock. This means that 

saturation level did not effect the transesterification reaction and all fatty acids react with 

essentially the same rate. 

For the pretreatment reaction of the brown grease with 39.6% FFA in the pilot plant, 

the ingredient amounts at each stage for one batch are shown in Table 5.41. 

Table 5.40: Fatty acid composition of the brown grease, yellow grease, and soybean oil 
and their methyl esters produced in pilot plant 

Product 
Carbon Chain (%)* Unknown 

Components 
Sat. 
(%) 

Product 
C14:0 C15:0 C16:0 C16:l C17:0 C18:0 C18:l C18:2 C18:3 C20-.0 

Unknown 
Components 

Sat. 
(%) 

Soybean 
Oil - - 10.58 - 0.11 4.76 22.52 52.34 8.19 0.36 0.48 16.29 

Soybean 
Oil 

Methyl 
Ester 

- - 10.56 - 0.11 4.74 22.51 52.39 8.22 0.36 0.44 16.26 

Yellow 
Grease 2.43 0.37 23.24 3.79 1.00 12.96 44.32 6.97 0.67 0.14 1.11 39.76 

Yellow 
Grease 
Methyl 
Ester 

2.42 0.36 22.77 3.84 0.95 12.03 44.98 7.80 0.79 0.14 1.24 38.67 

Brown 
Grease 1.66 0.18 22.83 3.13 0.55 12.54 42.36 12.09 0.82 0.20 0.80 38.16 

Brown 
Grease 
Methyl 
Ester 

1.63 0.19 22.84 3.06 0.58 12.94 42.51 11.61 0.79 0.21 0.73 38.39 

*Measured by Woodson-Tenent Laboratories, Inc., Des Moines, LA. 

Table 5.41: Ingredient amounts used in the pretreatment reaction of the brown grease 
with 39.6% FFA for one batch 

Reactant 1" Stage ra Stage 
Feedstock 15 kg 25 kg 
Methanol 14.85 kg 4.34 kg 
Sulfuric Acid 0.590 kg 0.087 kg 
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After pumping the required amount of brown grease at 60°C into the pretreatment 

reaction tank, the methanol solution with sulfuric acid was added manually to the reaction 

tank. The first pretreatment consisted of 10% sulfuric acid, and a 20:1 molar ratio of 

methanol based on the 39.6% FFA measurement. The mixture was recirculated for one hour 

through the heating pipe which kept the mixture temperature between 55°C and 60°C. When 

the reaction was complete, the mixture was pumped to the first stage settling tank to separate 

the alcohol-water mixture from the pretreated brown grease. The alcohol-water mixture was 

removed since the water would affect the next reactions. At the end of the first stage, the 

average acid value of the feedstock was measured to be 6.96 mg KOH/g. 

In the second stage of the pretreatment, the feedstock in the first stage-settling tank 

was taken back to the pretreatment reaction tank and the additional methanol and sulfuric 

acid solution were added in the amounts shown in Table 5.41. In this pretreatment stage, the 

sulfuric acid amount was 10%, and the molar ratio was 40:1 based on the FFA level of 6.96 

mg KOH/g. Again, the mixture was recirculated for one hour through the heating pipe where 

the temperature was kept between 55°C and 60°C. After the reaction, the mixture was taken 

to the second stage settling tank. The water formation (less than 0.1%) in this stage was so 

low that it would not affect the transesterification reactions. Therefore, the alcohol-water 

mixture was not removed before the main reaction. At the end of the second stage, the 

average acid value of the feedstock was measured to be 1.54 mg KOH/g. The acid value 

changes in the pretreatment reaction are shown in Table 5.42. 

The ingredient amounts for the main transesterification of the pretreated brown grease 

are shown in Table 5.43 for one batch. The FFA level of the pretreated brown grease was 

determined and an additional catalyst amount was calculated for neutralization. The total 
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Table 5.42: The changes in the acid values of the brown grease with 39.6% FFA in the 
pretreatment reaction with 10% sulfuric acid 

Methanol Molar Ratio 
Run 1 Run 2 

Methanol Molar Ratio 
A.V. (mgKOH/g) A.V. (mgKOH/g) 

After 1" Step 20:1 6.96 6.84 
After 2'" Step 40:1 1.54 1.62 

Table 5.43: Ingredient amounts for transesterification of pretreated brown grease for 
one batch 

Reactant Amount (kg) 
Pretreated Brown Grease 180 
Methanol 23.58 
NaOCH3 (0.21%) 0.23 
NaOCHj (to neutralize) 0.45 

catalyst amount is also shown in the table. After pretreatment, the process was continued 

with the alkaline catalyst (0.21% NaOCH} + neutralization amount) at a 6:1 molar ratio of 

methanol. The molar ratio of alcohol and the catalyst amount were calculated for the 

transesterification based on the initial amount of oil in the brown grease. The 

transesterification process was conducted at room temperature for 8 hours. Then, the mixture 

was pumped to the separation tank, and the ester and glycerin layers were allowed to separate 

in the tank overnight. A sample was taken from the bottom of the separation tank and it was 

washed with hot water. After settling the mixture, it was observed that the material that had 

collected at the bottom of the tank contained same ester. Therefore, it was determined that 

the separation did not occur completely. The mixture was washed six times for 30 minutes 

each with soft hot water (60°C) to remove the glycerin, excess alcohol, and catalyst. For each 

washing, the amount of water was 50% by volume of the ester. After extracting the wash 

water-glycerin mixture, the ester was pumped to the storage tank. After the 4lh washing step 
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the interphase material that had accumulated between the ester and wash water was separated 

from the ester. The reaction completion data for the brown grease after reaction with the 

alkaline catalyst are shown in Table 5.44 for two separate runs. 

The acid values measured in the large-scale biodiesel production from brown grease 

were very close to those from the laboratory-scale biodiesel production from brown grease. 

The 2-step pretreatment with 10% sulfuric acid was successful for the pilot plant-scale 

biodiesel production from brown grease with 39.6% FFA in the same way as it had worked 

on the laboratory scale. This confirms that the sulfuric acid amount has a strong effect on the 

reduction of the acid level of feedstocks with high FF As. After the transesterification of the 

brown grease, the results confirmed that more catalyst used in the transesterification reaction 

increased the soap formation and reduced the ester yield. The glycerin separation problem 

continued even though the sodium methoxide was used at a concentration as low as 0.21%. 

Table 5.44: Transesterification reaction of the brown grease with 39.6% FFA 

Run 
No. 

Catalyst Amount 
W 

Total Glycerin 
(%) 

Free Glycerin 
(%) 

Specific 
Gravity 

Yield 
(%) 

1 0.41 0.20 0.0103 0.8747 63.81 
2 0.21 0.20 0.0185 0.8749 73.88 

5.7.6. Soap and Catalyst Analysis in Pilot Plant Methyl Ester Production 

To investigate the effectiveness of the washing process in the pilot plant samples of 

ester, wash water, and glycerin were collected, and the soap and catalyst amount were 

measured. Three different methyl esters were produced from soybean oil, yellow grease with 

9% FFA, and brown grease with 39.6% FFA as described in the three case studies discussed 

earlier. The percentage and amounts of soap and catalyst in the ester, wash water, and 
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glycerin are shown in Table 5.45. Table 5.46 shows the catalyst metal mass balance. As seen 

in the tables, most of the catalyst was removed with the glycerin in the transesterification of 

the soybean oil. For the transesterification of the yellow and brown grease, most of the 

catalyst was removed with the wash water due to the lack of glycerin separation. Almost all 

of the catalyst was removed with the first 2 wash water cycles. No catalyst was found in the 

wash water after the 2nd washing but soap was still found in the following washing steps. The 

total amounts of potassium (K) output and sodium (Na) output were very close to the input 

amount. This confirms the accuracy of the measurements and that most of the catalyst and 

soap were removed from the biodiesel. As was seen in the Table 5.45, the washing of yellow 

and brown grease is incomplete yet the Na balance shows that very little soap remains. Also, 

The interphase was not analyzed but the Na balance indicates that it cannot contain much Na. 

Therefore, it is probably not a soap compound. 

Table 5.45: Analysis of the catalyst amount and soap produced in the pilot plant 
transesterification reaction 

Soybean Oil* Yellow Grease** Brown Grease** 
Sample % % % % % % 

Cat. Soap Cat. Soap Cat. Soap 
Ester 0 0.015 0 0.012 0 0.014 

Wash Water - - - - - -

1 0 0.201 0.110 3.368 0.075 2.677 
2 0 0.108 0.073 1.505 0.034 1.032 
3 0 0.053 0 0.344 0 0.274 
4 0 0.038 0 0.242 0 0.222 
5 0 0.029 0 0.241 0 0.221 
6 0 0.029 0 0.242 0 0.221 

Glycerin 4.774 7.625 - - - -

* KOH was used as an alkaline catalyst. 
** NaOCH] was used as an alkaline catalyst. 
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Table 5.46: Mass balance of the catalyst used in the pilot plant transesterification 
reaction 

Soybean Oil Yellow Grease Brown Grease 
Total Input of Catalyst 1640 g KOH 915 g NaOCHj 680 g NaOCHj 
Total Input of Pure Metal Catalyst 1143.30 g K 389.38 g Na 289.37 g Na 
Methyl Ester 3.082 g 1.047 1.2904 
Glycerin 1076.41 g - -

Wash Water 56.82 g 386.59 290.37 
Total output of Pure Metal Catalyst 1136.31 g K 387.64 g Na 291.66 g Na 

5.7.7. Summary of the Pilot Plant Operation and Analysis 

The main objective of this study was to develop procedures to prepare large amounts 

of methyl esters from soybean oil, yellow grease, and brown grease with high FFA using the 

pilot plant. To prepare biodiesel from soybean oil, 1% KOH was used as the catalyst with 

methanol at a 6:1 molar ratio. The transesterification reaction was conducted at room 

temperature for 8 hours. For yellow grease and brown grease, the 2-step acid-catalyzed 

pretreatment reaction developed in the earlier part of the project was applied to reduce its 

acid value to less than 2 mg KOH/g. Then, the transesterification reaction was continued with 

0.21. sodium methoxide as the alkaline catalyst at room temperature for 8 hours. 

The following conclusions can be drawn from the pilot plant-scale biodiesel 

production from soybean oil, yellow grease, and brown grease with high FFA. 

1. The mixing process is very important in determining the completeness of the 

transesterification reaction and the product yield. 

2. The two-step acid catalysis process was successful in decreasing the acid values of the 

yellow grease and brown grease to less than 2 mg KOH/g. However, the brown grease 

required 10% catalyst in the 2-step pretreatment reaction. After decreasing the acid value 

of the feedstocks, alkaline catalyst transesterification gave good ester conversion and 
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biodiesels met the total and free glycerin specification. 

3. After transesterification of the pretreated yellow and brown grease, the glycerin did not 

separate after overnight settling. 

4. The number of washing cycles is very important and affects the total and free glycerin 

amount in the ester produced from pretreated feedstocks with high FFA. When the 

number of washing cycles was increased from 4 to 6, the total glycerin and free glycerin 

amount in the ester decreased from 0.29% to 0.23% and from 0.124% to 0.019%, 

respectively. 

5.8. Economic Analysis of the Methyl Esters Produced in the Pilot Plant 

An economic analysis of the methyl esters produced in the pilot plant was conducted 

for a 50-gallon batch of biodiesel production. The costs for producing biodiesel from 

feedstocks with high FFA and from soybean oil are presented. 

5.8.1. Cost Analysis of the Methyl Esters Produced in the Pilot Plant 

In the cost analysis, only the operating cost was estimated. The capital cost was not 

included. However, the capital cost for the pilot plant that process yellow and brown grease 

will be somewhat higher than for soybean oil because of the need for pretreatment 

equipment. The 12 month average prices [99] of the feedstocks and chemicals were taken as 

a base since the change in the prices of the feedstocks and chemicals will affect the biodiesel 

cost. In addition, to investigate the sensitivity of the operating cost to variations in the 

feedstock costs, three market prices, a minimum, an average, and a maximum price, were 

used by estimating from the annual market average price variations over the last 5 years [100, 

74]. These prices are shown in Tables 5.47 and 5.48. 
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Table 5.47: Market prices of soybean oil and yellow grease in last 5 years 

Marketing Year Soybean Oil (S/lb) Yellow Grease ($/lb) 
1995 0.247 0.1476 
1996 0.225 0.1600 
1997 0.258 0.1465 
1998 0.199 0.1141 
1999 0.157 0.0938 

Table 5.48: Market prices of the feedstocks and chemicals used in the calculation 

Feedstock/Chemical Minimum Average Maximum 
Soybean Oil ($/lb) 0.15 0.20 0.25 
Yellow Grease ($/lb) 0.08 0.13 0.18 
Brown Grease ($/lb) 0.05 0.09 0.13 
Methanol ($/gal) 0.35 0.40 0.45 
Sulfuric Acid ($/ton) 41.00 46.00 51.00 
Sodium Methoxide ($/lb) 0.60 0.65 0.70 

In the cost analysis, glycerin recovery has not been included because the clean-up 

costs are still uncertain but the value of the glycerin will partially off set the capital costs of 

the equipment. However, it was assumed that the excess methanol used in the pretreatment 

and transesterification reactions was recovered. A methanol recovery diagram is shown in 

Figure 5.25. Although this equipment is not currently installed on the pilot plant, it will be 

installed in the future. Natural gas was assumed to be used for the heating processes and 80% 

efficiency was assumed. Two separate recovery units were assumed. Since the methanol 

recovery process in the pretreatment unit contains some water, it requires another distillation 

unit to separate the methanol from the water. Therefore, the main reaction recovery unit was 

separated from the pretreatment recovery unit. In the main unit the recovery of methanol was 

assumed to occur after the transesterification. Then, it was assumed the mixture will be 

allowed to settle overnight to separate the methyl ester from the glycerin. It was expected that 

this type of recovery will save energy and reduce the operating cost. Other operating costs, 



www.manaraa.com

152 

Methanol Recovery 
in Pretreatment Unit 

From Pretreatment 
Reactor 

Methanol & Water 

First Pretreated 
high FFA 
Feedstock 

Settling Tank 

120 Gal. 

Feedstock for 
2nd Step 

Methanol & Water 

Second Pretreated 
high FFA 
Feedstock 
Settling & 

Storage Tank 

100 Gal. 

Feedstock for Main 
Reaction 

•<— 

Cold Water Out 
Methanol Vapor 

Distillation Condensing 

W Water 

Cold Water In 

[X] > Methanol Tank 

Methanol Recovery 
in Main Unit 

Methanol Vapor 
Cold Water Out 

Cold Water In 

—[X] > Methanol Tank 

Condensing 

Unit 

Main 
Reactor 
70 Gal. 

Glycerin 
Separation 

Tank 
130 Gal. 
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Table 5.49: Utility costs for biodiesel production 

Type of Cost Cost Amount 
Natural Gas ($/1000 ftj) 3.34 
Electrical ($/kW-hr) 0.062 

Water ($/100 ftJ) 1.39 

such as the natural gas price for the methanol recovery, electrical, and water costs were 

included to determine the final biodiesel price. Table 5.49 shows these utility prices. 

5.8.2. Comparison of the Costs of the Methyl Esters Produced in the Pilot Plant 

A sample calculation for 180 kg of yellow grease with 9% FFA (case study 2) is 

shown in Table 5.50. The calculation is based on the estimated average price for the yellow 

grease. The pump used in the first step of pretreatment to transfer the feedstock and for 1 

hour of recirculation had a 0.373 kW maximum power requirement and the heater had 3 kW 

of power. The pump was used for 1.5 hours for each 20-kg of feedstock including the transfer 

of the feedstock into and out of the pretreatment reactor. The same process was repeated nine 

times to reach the 180 kg capacity of the main reactor. The heater was assumed to be used for 

20 minutes to reach 60°C during recirculation of the reactants. In the methanol recovery 

calculation the heat of evaporation for methanol was taken as 1,185 kJ/kg. The heat required 

to raise the other compounds from 60°C to the boiling temperature of methanol (65°C) was 

not included as this was expected to be small and could be partially supplied by heat recovery 

from the condensing methanol. The lower heating value for the natural gas was assumed to 

be 49,216 kJ/kg, and the fuel was assumed to be burned with 80% of its heating value 

supplied to the fluid. The methanol amount calculated for the recovery was assumed to be the 

excess methanol beyond the stoichiometric amount. The mixer used in the transesterification 



www.manaraa.com

154 

Table 5.50: A sample cost calculation of yellow grease biodiesel 

Cost Type Amount Unit Cost Cost (S) Explanation 
Yellow Grease 20 kg 0.2865 $/kg 5.7304 feedstock cost 

For 1" step pretreatment 
Methanol 0.225 kg 0.137 $/kg 0.031 stoichiometric 
Catalyst 

(sulfuric acid) 
0.09 kg 0.101 $/kg 0.0091 

5% based on FFA 
amount 

Electricity 
(for pumping) 

1.5 hours 0.062 S/kW-hr 0.035 0.373 kW 
pump power 

Natural Gas 
(for heating) 

24.5 kg 
mixture 

0.167 S/kg 
(natural gas) 

0.069 -

4.275 kg 
Methanol recovery 

0.128 kg natural 
gas required 

0.167 S/kg 
(natural gas) 

0.021 
the excess 

methanol was 
recovered 

For Z"" step pretreatment 
Methanol 0.053 kg 0.137 S/kg 0.0073 stoichiometric 
Catalyst 

(sulfuric acid) 
0.021 kg 0.101 S/kg 0.0021 5% based on FFA 

amount 
Electricity 

(for pumping) 
1.5 hours 0.062 S/kW-hr 0.035 

0.373 kW 
pump power 

Natural Gas 
(for heating) 

22.13 kg 
mixture 

0.167 S/kg 
(natural gas) 

0.064 -

2.077 kg 
Methanol recovery 

0.062 kg natural 
gas required 

0.167 S/kg 
(natural gas) 

0.010 
the excess 

methanol was 
recovered 

Total for pretreatment of 20 kg feedstock = 5.9919 for one process 
Total for pretreatment of 180 kg feedstock = 53.9271 for nine process 

T ransesterification 
Methanol 16 kg 0.137 S/kg 2.192 stoichiometric 

Catalyst 
(NaOCHj) 

0.750 kg 1.44 S/kg 1.08 
0.21% based on 
the oil amount in 

the feedstock 
Electricity 

(for mixer and 
pump) 

12 hours 0.062 S/kW-hr 0.2775 
0.373 kW 

pump power 

Washing Water 
(including disposal 

fee) 
300 kg 0.0010 S/kg 0.30 -

Heating 
(for Water at 60°C) 

300 kg 
0.167 S/kg 

(natural gas) 
0.9869 -

16 kg 
Methanol recovery 

0.481kg natural 
gas required 

0.167 S/kg 
(natural gas) 

0.081 
the excess 

methanol was 
recovered 

Total for transesterification of 180 kg feedstock = 4.9174 for one process 
Total overall cost = 58.8445 for one batch 

Unit Costs = 0.3592 S/kg 0.1630 S/lb 1.1739 S/gal for 91% yield 
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for 8 hours also had 0.373 kW maximum power. The pumping time for the feedstock into 

and out of the main reactor was assumed to be 2 hours and the pump was used for another 2 

hours in the washing process. Thus, the 0.373kW pump was on for a total of 12 hours during 

the reaction giving a total of 4.78 kW-hrs of electrical power required. 

The biodiesel cost comparisons are presented in Table 5.51 and in Figures 5.26, 5.27, 

and 5.28 for the minimum, average, and maximum consumable prices, respectively. Table 

5.51 shows the cost for the fuels considered in the three case studies and the figures show the 

costs for various values of the FFA level. As seen in the figures, the FFA level of the 

feedstock affects the operating cost slightly. As mentioned earlier, the methanol amount 

increases in the pretreatment process of the feedstock with higher FFA. This causes more 

energy cost for the recovery of the excess methanol. However, these are low costs that do not 

increase the operating cost of the biodiesel from the feedstocks with high FFA by a large 

amount. 

The costs to produce biodiesel from soybean oil, yellow grease with 9% FFA, and 

brown grease with 40% FFA are similar to each other. When compared on this basis the 

consumable costs for the biodiesels from both YGME and BGME are considerably less than 

for SME because of their lower feedstock cost. Even if the yield was assumed to be only 91% 

for both the YGME and BGME, their costs were still lower than for SME. State and federal 

excise taxes on diesel fuel used for on-highway trucks are $0.225/gallon and $0.244/gallon, 

respectively. When these are added to the $0.911 cost of biodiesel from brown grease and a 

12% penalty is charged to the biodiesel due to its lower energy content, the cost per gallon 

for BGME biodiesel is $1.55. While this cost does not include the capital cost of the plant or 

transportation and profit, it is close to current diesel fuel prices. 
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Table 5.51: Cost comparison of the methyl esters produced in the pilot plant 

Cost Type 
(S/gai) 

Type of Methyl Ester 
Cost Type 

(S/gai) if yield 99%) 
Cost Type 

(S/gai) 
SME YGME BGME 

Minimum 1.206 0.721 0.526 
Average 1.584 1.103 0.837 

Maximum 1.962 1.485 1.148 
if yield 91%) 

Minimum - 0.761 0.573 
Average - 1.177 0.911 

Maximum - 1.592 1.248 
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Figure 5.26: Biodiesels cost comparison at minimum consumable prices 
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Figure 5.27: Biodiesels cost comparison at average consumable prices 
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Figure 5.28: Biodiesels cost comparison at maximum consumable prices 
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6. ENGINE TEST RESULTS AND DISCUSSION 

This chapter discusses the engine performance and emissions of a diesel engine 

fueled with No. 2 diesel fuel, yellow grease methyl esters (YGME), soybean oil methyl esters 

(SME), a 20% YGME blend in No. 2 diesel fuel, and a 20% SME blend in No. 2 diesel fuel. 

Each engine test was repeated three times. The average of the three data points was used in 

the figures and the error bars show the spread between maximum and minimum points 

among the three values. The raw data collected during the engine test are provided in 

Appendix G. 

The first section will present the fuel property data and then the engine performance 

and emission data will be discussed. 

6.1. Properties of the Fuels Used in Engine Test 

This section presents the physical and chemical properties of the fuels used in the 

engine test. The No. 2 diesel fuel was purchased from a commercial supplier. Soybean oil 

methyl ester and yellow grease methyl ester were prepared in the pilot plant located at the 

BECON facilities of the Iowa Energy Center in Nevada, Iowa. The fatty acid compositions of 

the feedstocks and their esters are shown in Table 6.1. It was observed that the total saturated 

fatty acid composition of the yellow grease was 39.76% and the saturated fatty acid 

composition of the soybean oil was 16.29%. Palmitic (CI6:0) and stearic (CI8:0) acids were 

the most common saturated fatty acids in the yellow grease at 23.24% and 12.96%, 

respectively. As seen in Table 6.1, after transesterification, the saturated fatty acid 

percentages in the ester remained almost the same when compared with the respective 

feedstock. This confirms the earlier observation that saturation level does not affect the 
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transesterification reaction. 

The physical and chemical properties of the No. 2 diesel fuel, soybean oil methyl 

ester, and yellow grease methyl ester are presented in Table 6.2. When compared with No. 2 

diesel fuel, the methyl esters from soybean oil and yellow grease contain around 11% Oz. 

However, the C/H ratios are lower than that of the No. 2 diesel fuel. The sulfur contents of 

the esters were less than the measurement threshold of 0.005%, while the diesel fuel used in 

this study contained 0.041% sulfur. The gross heat of combustion of the methyl esters from 

soybean oil and yellow grease were 39,871 kJ/kg and 39,817 kJ/kg, respectively, which were 

12% lower than the 45,339 kJ/kg gross heat of combustion of the diesel fuel. The calculated 

molecular weights of the esters from soybean oil and yellow grease were 291.62 and 283.52, 

respectively, which were 50% and 46% higher than the 193.89 estimated molecular weight of 

the diesel fuel. The cetane number of the esters from soybean oil and yellow grease were 

51.5 and 62.6, respectively, which were 21% and 47% higher than the 42.6 cetane number of 

the diesel fuel. However, both esters had higher specific gravity and kinematic viscosity 

Table 6.1: Fatty acid composition of the feedstocks and the esters 

Product 
Carbon Chain (%)* Unknown 

Components 
Sat 
(%) 

Product 
C14:0 C15:0 C16:0 C16:l C17:0 C18:0 €18:1 C18:2 C18:3 C20:0 

Unknown 
Components 

Sat 
(%) 

Soybean 
Oil 

<0.10 <0.10 10.58 <0.10 0.11 4.76 22.52 52.34 8.19 0.36 0.48 16.29 

Soybean 
Oil 

Methyl 
Ester 

<0.10 <0.10 10.56 <0.10 0.11 4.74 22.51 52.39 8.22 0.36 0.44 16.26 

Yellow 
Grease 

2.43 0.37 23.24 3.79 1.00 12.96 44.32 6.97 0.67 0.14 1.11 39.76 

Yellow 
Grease 
Methyl 
Ester 

2.42 0.36 22.77 3.84 0.95 12.03 44.98 7.80 0.79 0.14 1.24 38.67 

•Measured by Woodson-Tenent Laboratories, Inc., Des Moines, IA. 
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Table 6.2: The physical and chemical properties of No. 2 diesel fuel, soybean oil methyl 
ester, and yellow grease methyl ester 

Test Property 
No. 2 Diesel 

Fuel 
Soybean Oil 
Methyl Ester 

Yellow Grease 
Methyl Ester 

Carbon (% mass) 86.70 a 77.10c 76.46c 

Hydrogen (% mass) 12.71a 11.81c 12.25c 

Oxygen (% mass) - 10.97c 11.29e 

C/H Ratio 6.82 6.53 6.24 
Sulfur (% mass) 0.041a <0.005 a <0.005 a 

Typical Formula C14.09H24.7ge Ci8.74H34.43Q26 C18.06H34.72Q2e 

Average Molecular Weight 193.89" 291.62c 283.52 e 

Cetane Number (ASTM D613) 42.6 a 51.5 a 62.6a 

Gross Heat of Combustion (kJ/kg) 45,339 a 39,871 a 39,817 a 

Net Heat of Combustion (kJ/kg) 42,640a 37,388a 37,144a 

Specific Gravity (mrnVs @ 21°C) 0.8537c 0.8814c 0.8728c 

Kinematic Viscosity (@ 40°C, mm'/s) 2.8271 c 4.2691 ' 5.1643 c 

Total Glycerin (%) - 0.028° 0.129° 

Free Glycerin (%) - 0.000° 0.015 0 

Distillation (ASTMD86, °F) " 
Initial Boiling Point 352 - -

5% 392 - -

10% 413 - -

20% 440 - -

30% 462 - -

40% 482 - -

50% 502 - -

60% 522 - -

70% 543 - -

80% 569 - -

90% 602 - -

95% 630 - -

End Point 653 - -

Recovery (%) 98.0 - -

Residue (%) 1.9 - -

Loss (%) 0.1 - -

b Measured by Williams Laboratory Services, Kansas City, KS. 
c Done in Department of Mechanical Engineering, Iowa State University, Ames, IA. 
d Calculated using Universal Oil Products Method 375-86, Des Plaines IL. 
e Calculated from Fatty Acid Distribution. 
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when compared with the diesel fuel. The total and free glycerin amount in the esters, which 

were 0.028% and 0.000%, and 0.129% and 0.015%, respectively, for the soybean oil methyl 

ester and yellow grease methyl ester, met the ASTM specifications (ASTM PS 121) for 

biodiesel. 

6.2. Performance and Emissions of the Diesel Engine Fueled with Biodiesel 

This section will discuss the diesel engine emissions and performance when the 

engine was fueled with biodiesel from yellow grease, soybean oil, and No. 2 diesel fuel. 

6.2.1. Engine Performance 

In order to understand the effect of the biodiesel on the engine performance and 

emissions, the brake specific fuel consumption (BSFC), in g/kW-hr, and thermal efficiency 

of the engine were measured at full load (190 ft-lbf) and at an engine speed of 1400 rpm. The 

engine load and speed were kept constant for all of the test fuels. Therefore, the brake power 

was kept constant throughout the tests. 

A statistical analysis technique called "Tukey Grouping" was performed on the data. 

This technique provides specific information on the interaction between the variables. If the 

variables in the Tukey Grouping have the same letter this means the differences between 

those variables are not statistically significant. The Tukey Grouping analysis for the BSFC is 

shown in Table 6.3. From this table, it was concluded that there was no significant difference 

between the BSFC of the engine operating on SME and YGME, and between the 20% blend 

of SME and the 20% blend of YGME. However, both biodiesels and their blends have a 

significant effect on the BSFC compared with the No. 2 diesel fuel. 
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Table 6.3: Tukey's Studentized range (HSD) test for BSFC 

Tukey Grouping Mean N FUEL 
A 260.9367 3 SME 

A 259.3267 3 YGME 

B 234.5533 3 20% YGME 

B 234.2867 3 20% SME 

C 228.4167 3 No. 2 Diesel 

Minimum Significant Difference = 2.7884 

Analysis of variance (ANOVA) was also conducted to determine the level of 

significance of the different fuels on the engine performance and emissions, and the complete 

analysis results are shown in Appendix F. In the ANOVA tables, DF represents the degrees 

of freedom, the F value represents the probability distribution in repeated sampling, and Pr 

represents the weight of the significance. When the value shown in the Pr > F column is 

small (approximately 0.0001) then the significance of the difference between the fuels is 

large. The significance level (Pr > F value) of the fuels on the dependent variable can be 

identified from the ANOVA tables. For all of the statistical analyses of this study, a 95% 

confidence interval was used. The R-squared value and the mean of the dependent variable 

are also shown in the ANOVA table. The results of the ANOVA for the brake specific fuel 

consumption (BSFC) are shown in Table 6.4. Since the Pr value is 0.0001 in the ANOVA 

table, the fuels tested in the engine have a significant effect on the BSFC. 

Table 6.4: Analysis of variance (ANOVA) for BSFC 

Dependent Variable: BSFC 
Source DF Sum of Squares Mean Square F Value Pr > F 
FUEL 4 2840.868 710.217 659.58 0.0001 
Error 10 10.768 1.077 
Corrected Total 14 2851.636 

R-Squared = 0.9962; BSFC Mean = 243.504 
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For each fuel type, the BSFC and the percentage change in the BSFC are shown in 

Figures 6.1 and 6.2, respectively. Table 6.5 also summarizes the average values measured 

and the percent changes for the fuels used in the engine tests. As seen in the table and figures, 

the methyl esters have higher BSFCs than the No. 2 diesel fuel. The increase in BSFC is 

understandable since the methyl esters had heating values that were about 12% less than for 

No. 2 diesel fuel. 

Figure 6.2 shows the percent change in BSFC relative to No. 2 diesel fuel. The 

YGME had a 14.24% increase in BSFC when compared with No. 2 diesel fuel while the 

SME had a 13.53% increase. When the two esters are compared with each other, there was a 

0.71% higher BSFC measured for the YGME. When looking at the blends, the 20% YGME 

m 

• No. 2 Diesel • 20% SME H 20% YGME H SME B YGME 

Figure 6.1: Comparison of brake specific fuel consumption (BSFC) 
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blend had a 2.57% increase and the 20% SME had a 2.69% increase in BSFC. These results 

are similar to those of Monyem [78], and McDonald et al. [101] who fueled a diesel engine 

with soybean oil methyl ester and No. 2 diesel fuel. In those studies, a 13 to 14 % increase in 

BSFC for the methyl esters was found. Ali [102] studied the effect of beef tallow methyl 

ester on engine performance and emissions. He also found a 12 to 14 % increase in BSFC 

which confirms the results given above. 

The brake thermal efficiencies of the engine when operating on the different fuels and 

blends are shown in Figure 6.3. The brake thermal efficiency is defined as the actual brake 

work per cycle divided by the amount of fuel chemical energy as indicated by the fuel's 

lower heating value. As the figure shows, the thermal efficiency of the SME, YGME, and 

• 20% SME a 20% YGME H SME H YGME 

Figure 6.2: Percent change in BSFC 
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their blends were almost the same as for the No. 2 diesel fuel. This means that the engine 

converts the chemical energy of the fuel to mechanical energy with the same efficiency for 

all the fuels used in the test. The thermal efficiency for all of the tested fuels was about 37% 

at a load of 190 ft-lbf and an engine speed of 1400 rpm. 

Table 6.5: Average values and % changes in BSFC and thermal efficiency 

Fuel Type 
BSFC 

(g/kW-hr) 
% Change 
in BSFC 

Thermal 
Efficiency (%) 

% Change in 
Thermal Efficiency 

No. 2 Diesel 228.42 - 36.96 -

20% SME 234.55 2.69 36.90 -0.16 

20% YGME 234.29 2.57 36.99 0.07 

SME 259.33 13.53 37.13 0.45 

YGME 260.94 14.24 37.14 0.49 

Has 

• No. 2 Diesel D 20% SME 0 20% YGME BSME B YGME 

Figure 6.3: Brake Thermal efficiency at same engine condition 
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Monyem [78], Chang et al. [16], and Yahya [103] fueled a John Deere 4276T four-

cylinder, four-stroke, turbocharged DI diesel engine with biodiesel fuels and No. 2 diesel 

fuel. They also found that the thermal efficiency of the biodiesel and their blends were the 

same as with No. 2 diesel fuel. 

The results of the Tukey Grouping test for the thermal efficiency are shown in Table 

6.6. From this table, it was concluded that there was no significant difference between the 

fuels since all of the fuels have same letter. The ANOVA analysis for the thermal efficiency 

is shown in Appendix F. The Pr value was much larger than 0.0001, which confirms that 

there was no significant difference between the thermal efficiency of the fuels. 

Table 6.6: Tukey Grouping test for variable: Brake Thermal Efficiency 

Tukey Grouping Mean N FUEL 
A 37.1433 3 SME 

A 37.1300 3 YGME 

A 36.9900 3 20% SME 

A 36.9633 3 No. 2 Diesel 

A 36.9033 3 20% YGME 

Minimum Significant Difference = 0.4313 

6.2.2. Engine Emissions 

In this section, the exhaust emissions are discussed for YGME, SME, 20% YGME 

blend, 20% SME blend, and No. 2 diesel fuel at the load of 190 ft-lbf. and the engine speed 

of 1400 rpm. The exhaust emissions measured were carbon monoxide (CO), carbon dioxide 

(CO2), unbumed hydrocarbons (HC), oxides of nitrogen (NOx), and the Bosch smoke number 

(SN). All results were converted to a brake specific basis (g/kW-hr) except for the SN. The 

values shown on the figures are the average of three data points and the error bars show the 
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spread between the maximum and minimum points. The Tukey Grouping test table is also 

presented for each emission species. 

6.2.2.1. Comparison of CO Emissions 

Carbon monoxide (CO) in diesel engines is formed during the intermediate 

combustion stages. For fuel-rich mixtures such as are found in spark-ignited engines, CO 

concentrations in the exhaust increase steadily with increasing equivalence ratio as the 

amount of excess fuel increases. However, diesel engines always operate well on the lean 

side of stoichiometric. Therefore, CO emissions from the diesel engines are usually low and 

most engine manufacturers meet CO regulations easily [91]. 

The brake specific CO exhaust emissions are shown in Figure 6.4. For all of the 

methyl esters and blends, the CO emissions were less than for the No. 2 diesel fuel. 

Compared to No. 2 diesel fuel, the CO emissions of the SME and YGME were reduced by 

18.22% and 17.77%, respectively. The CO emissions of the 20% blends of SME and YGME 

were decreased by 7.51% and 6.99%, respectively. Monyem [78], and Yahya [103] also 

found that biodiesel and their blends lowered CO emissions. In their study, they found 15.7% 

and 15.8% reductions in CO emissions compared to No. 2 diesel fuel, respectively, when the 

engine was fueled with neat biodiesel. 

The Tukey Grouping test results for the BSCO are presented in Table 6.7. The 

analysis shows that there is a significant difference between the fuels. The ANOVA result in 

Appendix F also confirms these results. When the Tukey results for the neat biodiesels are 

compared to No. 2 diesel fuel, there is a significant difference. However, the table shows that 

no significant difference between the two neat biodiesels or between the two blends. 
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Table 6.7: Tukey Grouping test 

Tukey Grouping Mean FUEL 
A 0.55600 No. 2 Diesel 

A 0.51700 20% SME 

B A* 0.51400 20% YGME 

C 0.45700 SME 

C 0.45400 YGME 

or variable: BSCO 

Minimum Significant Difference = 0.0406 
* The Tukey analysis shows borderline significance with double letters 

• 

• No. 2 Diesel • 20% SME 3 20% YGME S SME Q YGME 

Figure 6.4: Comparison of the brake specific carbon monoxide (BSCO) 

6.2.2.2. Comparison of CO2 Emissions 

Anything fueled by a carbon-based compound will produce carbon dioxide (CO2) as 

one of its products. The brake specific CO2 exhaust levels are shown in Figure 6.5. The COz 

emissions for the methyl esters were only slightly higher than for the No. 2 diesel fuel. 
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Compared to No. 2 diesel fuel, the CO2 emissions of the SME and YGME were increased by 

1.78% and 1.15%, respectively. The CO2 emissions of the 20% blends of SME and YGME 

were decreased by 0.04% and 0.06%, respectively. The changes of the CO2 emissions from 

the methyl esters were very small compared to No. 2 diesel fuel and there was almost no 

difference in CO2 emission observed between the two methyl ester blends and the No. 2 

diesel fuel. Ali [102] and Yahya [103] also found no significant difference in CO2 emissions 

between the biodiesel and No. 2 diesel fuel. 

The Tukey Grouping analysis shown in Table 6.8 confirms that there is no significant 

difference between the fuels. All fuels have same letter in the table. The ANOVA analysis 

given in Appendix F also confirms these results. 

Table 6.8: Tukey Grouping test or variable: BSCO 

Tukey Grouping Mean FUEL 

A 817.37 YGME 

A 812.25 SME 

A 803.02 No. 2 Diesel 

A 802.70 20% YGME 

A 802.56 20% SME 

Minimum Significant Difference = 33.542 

6.2.2.3. Comparison of Unburned HC Emissions 

The unburned hydrocarbons are another emission product that is regulated by the 

Environmental Protection Agency. The amount of HC in the exhaust depends on the engine 

operating conditions, the fuel spray characteristics, and the interaction of the fuel spray with 

the air in the combustion chamber. The brake specific HC exhaust emissions are shown in 

Figure 6.6. For all of the methyl esters and blends, the HC emissions were less than for the 
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BBSS# 
Kl!:## 

| • No. 2 Diesel • 20% SME ffl 20% YGME BSME B YGME 

Figure 6.5: Comparison of the brake specific carbon dioxide (BSCO:) 

No. 2 diesel fuel. Compared with No. 2 diesel fuel, the highest HC reduction was found for 

YGME, which was 46.29%, while the SME has a reduction of 42.50%. The HC emissions of 

the 20% blends of SME and YGME were decreased by 3.05% and 2.27%, respectively. The 

differences between the methyl esters from different feedstocks appear to be much less than 

the differences between the esters and No. 2 diesel fuel. Monyem [78] and Chang et al. [16] 

also found significant HC reduction when biodiesel was used in the diesel engine. 

The significance level for the change in BSHC is shown in Table 6.9. The table 

shows that there is a significant difference between the neat biodiesel fuels. However, the 

BSHC of the 20% blends of the biodiesels showed statistically similar results with No. 2 

diesel fuel. The ANOVA table shown in Appendix F, also shows that the changes in the 

means of the BSHC emissions of the fuels were significant. 
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6.2.2.4. Comparison of N0X Emissions 

Oxides of nitrogen (N0X) are another important emission product. While nitric oxide 

(NO) and nitrogen dioxide (NO2) are usually grouped together as NOx emissions, NO is the 

predominant oxide of nitrogen produced inside the engine cylinder. 

Table 6.9: Tukey Grouping test for variable: BSHC 

Tukey Grouping Mean N FUEL 
A 0.50300 3 No. 2 Diesel 

A 0.49133 3 20% SME 

A 0.48767 3 20% YGME 

B 0.28900 3 YGME 

B 0.27033 3 SME 

Minimum Significant Difference = 0.0555 

0.60 

0.50 -

0.40 -

I 

• No. 2 Diesel • 20% SME 020% YGME H SME BYGME 

Figure 6.6: Comparison of the brake specific hydrocarbon (BSHC) 
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The brake specific N0X exhaust emissions are shown in Figure 6.7. For all of the 

methyl esters, the NOx emissions were higher than for the No. 2 diesel fuel. Compared with 

No. 2 diesel fuel, the NOx emissions of the SME and YGME were increased by 13.09% and 

11.6%, respectively. The NOx emissions of the 20% blends of SME and YGME were 

increased by 1.51% and 1.14%, respectively. The NOx increase in the emissions may be 

associated with the oxygen content of the methyl esters, since the fuel oxygen may provide 

additional oxygen for NOx formation. However, the overall equivalence ratios for the methyl 

ester fuels were very similar to No. 2 diesel fuel. The impact of the fuel's physical properties 

on the engine's injection timing, which will be discussed later, is not fully understood but 

this may also play a role in the higher NOx emissions. 

Mittelbach and Tritthart [67] tested used frying oil methyl ester and they also found 

increased NOx emissions compared to No. 2 diesel fuel. Rickeard et al. [104] and Monyem 

[78] also mentioned that the NOx emission increased for the biodiesel fuels. 

The neat fuels have a significant effect on the NOx emissions as shown in Table 6.10. 

The Tukey Grouping shows that the NOx emissions from the 20% blends were not 

significantly different from the No. 2 diesel fuel, but the neat fuels were significantly 

different from No. 2 diesel fuel. 

Table 6.10: Tukey Grouping test for variable: BSNO, 

Tukey Grouping Mean N FUEL 

A 21.2753 3 YGME 

A 20.9953 3 SME 

B 19.0963 3 20% YGME 

B 19.0273 3 20% SME 

B 18.8130 3 No. 2 Diesel 

Minimum Significant Difference = 0.5937 
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22 

• No. 2 Diesel • 20% SME S 20% YGME H SME B YGME 

Figure 6.7: Comparison of the brake specific oxides of nitrogen (BSNO,) 

6.2.2.5. Comparison of Bosch Smoke Numbers (SN) 

The Bosch smoke number (SN) data are shown in Figure 6.8. For all of the methyl 

esters and the blends, the SNs were less than for the No. 2 diesel fuel. The SNs of No. 2 

diesel fuel, SME, and YGME were 1.06, 0.41, and 0.38, respectively. The smoke levels of 

the methyl esters and their blends were significantly lower than that of No. 2 diesel fuel. 

However, almost no difference was observed in the SNs between the two methyl esters and 

between the two blends. 

Schumacher et al. [105] fueled a Dodge pickup with soybean oil methyl ester and 

found a large reduction (86%) in SN when using neat biodiesel. Monyem [78] found a 56.9% 

reduction in SN when fueling the engine with soybean oil methyl ester confirming the results 

of this study. 
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The statistical analysis for the SN is shown in Table 6.11 and Appendix F. The table 

shows that there are significant differences between the fuels. When the fuels are compared 

to each other, the Tukey Grouping shows that the neat biodiesels are significantly different 

from No. 2 diesel fuel. However, the blends show no significant difference compared to No. 

2 diesel fuel at the 95% confidence level. 

Table 6.11: Tukey Grouping test for variable: SN 

Tukey Grouping Mean N FUEL 
A 1.05567 3 No. 2 Diesel 

A 0.88900 3 20% YGME 

A 0.87800 3 20% SME 

B 0.41133 3 YGME 

B 0.37767 3 SME 

Minimum Significant Difference = 0.1865 

% 0.8 

D No. 2 Diesel 020% SME S 20% YGME H SME Q YGME 

Figure 6.8: Comparison of the Bosch Smoke Numbers (SN) 
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6.2.2.6. Summary of Exhaust Emissions Results 

A summary of the percent changes in the exhaust emissions compared to No. 2 diesel 

fuel is shown in Table 6.12 and Figure 6.9. A significant reduction was observed in CO, HC, 

and SN for YGME and SME. However, an increase in the NOx emissions was found for both 

neat methyl esters. The emissions of CO, HC, and SN were reduced by 17.77%, 46.29%, and 

64.21% for YGME, while SME had a reduction of 18.22%, 42.50%, and 61.05%, 

respectively. However, the increases in the NO* emission were 11.60% and 13.09% for 

YGME and SME, respectively. The changes in CO2 were not significant. The emissions of 

the methyl esters from the different feedstocks were very similar to each other. 

Table 6.12: Average values and % changes in the engine emissions 

Fuel Type 
CO 

(g/kW-hr) 
% Change 

in CO 
CO, 

(g/kW-hr) 
% Change 

in CO: 
HC 

(g/kW-hr) 
% Change 

in HC 
NO, 

(g/kW-hr) 
% Change 

in NO, 
SN 

% Change 
in SN 

No. 2 Diesel 0.56 - 803 0 - 0.50 - 18.8 - 1.06 -

20% SME 0.51 -7.51 802.7 -0.04 0.49 -3.05 19.1 1.51 0.89 -15.79 

20% YGME 0.52 -6.99 802.6 -0.06 0.49 -2.29 19.0 1.14 0.88 -16.84 

SME 0.45 -18.22 817.4 1.79 0.29 -42.50 21.3 13.09 0.41 -61.05 

YGME 0.46 -17.77 812.3 1.15 0.27 -46.29 21.0 11.60 0.38 -64.21 

6.3. Combustion Characteristics of the Fuels Tested in the Diesel Engine 

This section will discuss the combustion characteristics of the fuels used in the engine 

tests. First, the timing for the start of fuel injection will be compared. Second, a comparison 

of the start of combustion and the fuel burning rate will be presented. Finally, the ignition 

delay will be discussed for the different fuels. 

6.3.1. Comparison of the Start of Fuel Injection 

The injection line pressure and start of fuel injection will be affected by changes in 

the fuel properties such as compressibility and speed of sound. The start of injection will also 
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SN 

NOx 

HC 

C02 

• 20% SME 
H SME 

a 20% YGME 
S3 YGME 

CO 

t—r 1 
-65 55 -45 -35 -25 -15 -5 5 15 

% Change in the Exhaust Emissions Relative to No. 2 Diesel Fuel 

Figure 6.9: Percent change in the exhaust emissions relative to No. 2 diesel fuel 

change due to changes in the fuel injection pump. Rotary fuel injection pumps of the type 

used on this engine have the property that their end of injection timing is fixed. When 

additional quantities of fuel are injected, the timing for the start of injection occurs earlier 

[106]. Since it was necessary to inject 13-14% more biodiesel to provide the same torque as 

with diesel fuel, the injection timing advanced several degrees. 

The start of fuel injection for each fuel is shown in Table 6.13 and Figure 6.10. For 

the neat methyl esters, the start of fuel injection timings were earlier than for the No. 2 diesel 

fuel. The average starting timings for fuel injection for No. 2 diesel fuel, 20% SME, 

20%YGME, SME, and YGME were 13.50°, 14.40°, 14.60°, 16.18°, and 17.05° BTDC, 

respectively. The start of fuel injection is usually taken as the time when the injector needle 

lifts off its seat. Since a needle lift sensor was not available for this study, the timing at which 
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the fuel injection line pressure reached the injector nozzle opening pressure was taken as the 

start of injection. The injector nozzle opening pressure for the injectors used in the engine 

was about 207 bar. 

The SME and YGME fuel both injected about 2.68° and 3.55° earlier than No. 2 

diesel fuel, respectively. The blends had almost the same start of fuel injection. Figure 6.11 

Table 6.13: Combustion characteristics of the fuels 

Fuel 
Start of Fuel Injection 

(°BTDC) 
Start of Combustion 

CBTDC) 
Ignition 
Delay C) 

No. 2 Diesel 13.50 7.42 6.09 
20% SME 14.40 8.33 6.07 

20% YGME 14.60 8.50 6.10 
SME 16.18 10.83 5.34 

YGME 17.05 11.58 5.46 

18 

• No. 2 Diesel 020% SME 920% YGME H SME O YGME 

Figure 6.10: Start of fuel injection of the fuels 
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shows the injection line pressures for the fuels. Each fuel has a different injection line 

pressure since their physical fuel properties were different and different quantities of fuel 

were injected. The peak fuel injection pressure for the neat methyl esters was about 300 bars. 

Monyem [78] and Ali [102] obtained similar results, and they also mentioned that the start of 

fuel injection for biodiesel was earlier than for No. 2 diesel fuel. 

No. 2 Diesel 

20% SME 

20% YGME 

SME 

YGME 

300 . 

C 61 e 
I 200 J 

1 
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g 150 J 
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e 
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Figure 6.11: Injection line pressures of the fuels 

The statistical results for the start of fuel injection are shown in Table 6.14. The table 

shows that the fuel type had a statistically significant effect on the start of fuel injection. 

However, the table also shows that there was no significant difference between the two 

methyl esters or between the two blends. The ANOVA table in Appendix F confirms the 

effect of different fuels on the start of injection. 
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Table 6.14: Tukey Grouping test for variable: Start of fuel injection 

Tukey Grouping Mean N FUEL 
A 17.0467 3 SME 

A 16.1767 3 YGME 

B 14.5967 3 20% SME 

CB 14.4033 3 20% YGME 

C 13.5033 3 No. 2 Diesel 
Minimum Significant Difference = 1.0885 

6.3.2. Comparison of the Start of Combustion and Fuel Burning Rate 

The chemical properties of the fuel will effect its combustion in the cylinder. One of 

the main properties is the cetane number of the fuel. The higher cetane number for biodiesel 

means the fuel is expected to ignite more readily and have a shorter ignition delay period. 

In Table 6.13 and Figure 6.13, the starts of combustion timings for the fuels are 

shown. For the neat methyl esters, the start of combustion timings were earlier than for the 

No. 2 diesel fuel and this is confirmed by the heat release rate profiles shown in Figure 6.12. 

The start of combustion timings for No. 2 diesel fuel, 20% SME, 20%YGME, SME, and 

YGME were 7.42°, 8.33°, 8.50°, 10.83°, and 11.58° BTDC, respectively. 

As described earlier, the start of combustion is affected by the cetane number of the 

fuel. Biodiesel has a higher cetane number than No. 2 diesel fuel. Therefore, it starts to bum 

earlier than the No. 2 diesel fuel. The SME and YGME fuel both started to bum about 3.4° 

and 4.2° earlier than No. 2 diesel fuel, respectively. The peak point in the heat release rate for 

the No. 2 diesel fuel was higher than for the neat biodiesels. Both methyl esters had 

significant differences in the start of combustion when compared to each other. The blends 

also had significant differences compared to No. 2 diesel fuel. Scholl et al. [3], Monyem [78], 

and Ali [102] found identical results in their studies. 
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Figure 6.12: Heat release rate profiles of the fuels 
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Figure 6.13: Start of combustion of the fuels 
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Table 6.15 shows the results of the statistical analysis for the start of combustion 

timings of the fuels. The ANOVA table in Appendix F also shows significant differences 

between the fuels. All fuels had statistically significant differences in the start of combustion 

compared to the base diesel fuel. If the two methyl esters were compared to each other, the 

table also shows that there was a significant difference between the neat esters but not 

between the two blends. 

Table 6.15: Tukey Grouping test for variable: Start of combustion 

Tukey Grouping Mean N FUEL 
A 11.5833 3 SME 

B 10.8333 3 YGME 

C 8.5000 3 20% SME 

C 8.3333 3 20% YGME 

D 7.4167 3 No. 2 Diesel 
Minimum Significant Difference = 0.6938 

6.3.3. Comparison of the Ignition Delay 

As described earlier, the ignition delay in a diesel engine is defined as the time 

between the start of fuel injection and the start of combustion. In this study, the ignition delay 

was calculated as the time between when the injection line pressure reached 207 bar and 

when the change occurred in the slope of the heat release rate at the start of combustion. The 

heat release calculation was described in Chapter 4. 

Table 6.13 and Figure 6.14 show the ignition delay data for the fuels. For the neat 

methyl esters, the ignition delays were shorter than for the No. 2 diesel fuel. The ignition 

delay for No. 2 diesel fuel, 20% SME, 20% YGME, SME, and YGME were 6.09°, 6.07°, 
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6.10°, 5.34°, and 5.46°, respectively. The SME and YGME fuel both had about 0.75° and 

0.63° shorter ignition delays than No. 2 diesel fuel, respectively. Monyem [78] also found 

0.6° shorter ignition delay when fueling the engine with soybean oil methyl ester compared 

with No. 2 diesel fuel. 

D No. 2 Diesel D 20% SME S 20% YGME H SME B YGME 

Figure 6.14: Ignition delay of the fuels 

The Tukey Grouping test result for the ignition delay is shown in Table 6.16 and the 

ANOVA table is in Appendix F. The tables show that the ignition delays for the biodiesel 

fuels were significantly different from the No. 2 diesel fuel. The 20% blends of the biodiesel 

were not significantly different from the No. 2 diesel fuel. However, there was no statistically 

significant difference between the two methyl esters or between the two blends. 

The physical and chemical properties of the fuels will affect the ignition delay period, 
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Table 6.16: Tukey Grouping test for variable: Ignition delay 

Tukey Grouping Mean N FUEL 
A 6.0967 3 20% SME 

A 6.0867 3 No. 2 Diesel 

A 6.0700 3 20% YGME 

B 5.4633 3 SME 

B 5.3433 3 YGME 
Minimum Significant Difference = 0.5127 

and researchers have stressed that chemical properties are much more important than 

physical properties [91, 107, 108]. The ignition quality of a fuel is usually characterized by 

its cetane number. Higher cetane number generally means shorter ignition delay. The cetane 

numbers of the tested fuels were shown in Table 6.2. The cetane numbers for No. 2 diesel 

fuel, S ME, and YGME were 42.6, 51.5, and 62.6, respectively. The cetane number of the 

esters from soybean oil and yellow grease were 21% and 47% higher than the cetane number 

of the diesel fuel. The difference between the SME and YGME was expected because both 

Freedman and Bagby [109] and Van Gerpen [110] have pointed out that saturated esters have 

higher cetane numbers than unsaturated esters and the YGME is more saturated than the 

SME. 

6.4. Observed Trends in Engine Emissions and Combustion Characteristics 

In this section, the effect of the fuels on the pressures in the injection line and the 

effect of the combustion characteristics on exhaust emissions will be discussed. The 

discussion of the exhaust emissions will start with the effect of the ignition delay on the 

unbumed HC and CO emissions. Then, the effect of the start of fuel injection on the smoke 

number and the effect of the start of fuel injection and the start of combustion on the NO* 

emissions will be presented. 
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6.4.1. Effect of the Fuels on the Pressures in the Injection Line 

The physical properties of the fuel, such as compressibility and the speed of sound, 

will affect the pressure in the injection line. The fuels tested in this study have different 

physical properties and some of the properties for the fuels were shown in Table 6.2. Table 

6.17 and Figure 6.15 show how the injection line pressures changed for the fuels used in this 

study. The timings for the start of injection pressure rise were determined to be the point 

when the injection pressure first starts to rise in the line. The difference between the start of 

injection pressure rise and the start of injection was identified as the pressure rise time as 

shown in the Table 6.17. As seen in the table, No. 2 diesel fuel has the latest start of injection 

pressure rise, and the methyl esters have earlier starts of injection pressure rise. The timings 

for the start of injection pressure rise for No. 2 diesel fuel, 20% SME, 20%YGME, SME, and 

YGME were 17.58°, 18.58°, 18.75°, 20.33°, and 21.33° BTDC, respectively. The SME and 

YGME fuels both had about 2.75° and 3.75° earlier start of injection pressure rise than No. 2 

diesel fuel, respectively. Therefore, the start of injection for the fuels shows a similar trend 

with the start of the injection pressure rise. However, the pressure rise times, shown in Table 

6.17 and Figure 6.16, were almost the same for all the fuels. 

Table 6.17: Injection line pressure behavior of the fuels 

Fuel 
Start of Injection 

Pressure Rise CBTDC) 
Start of Injection 

CBTDC) 
Pressure Rise 

Time (°) 
No. 2 Diesel 17.58 13.50 4.08 
20% SME 18.58 14.40 4.18 

20% YGME 18.75 14.60 4.15 
SME 20.33 16.18 4.15 

YGME 21.33 17.05 4.28 
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D No. 2 Diesel • 20% SME S 20% YGME H SME • YGME 

Figure 6.15: Start of injection pressure rise of the fuels 

• No. 2 Diesel • 20% SME B 20% YGME H SME • YGME 

Figure 6.16: Injection pressure rise time of the fuels 
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6.4.2. Effect of Ignition Delay on Unburned HC and CO Emissions 

Hydrocarbons in the exhaust are the consequence of incomplete combustion of the 

hydrocarbon fuel. Fuel composition can significantly influence the magnitude of the organic 

exhaust emissions. Fuels containing high proportions of aromatics produce higher 

concentrations of hydrocarbon in the exhaust [91]. The aromatics content of the fuel also 

directly affects the cetane number [111]. Another factor that affects unburned hydrocarbons 

is the ignition delay. Longer ignition delay causes more unburned HC production in the 

exhaust [112]. Higher cetane number means shorter ignition delay. The No. 2 diesel fuel used 

in this study contained 35.7% aromatics, and both methyl esters contained no aromatics. 

Monyem [78] showed there was a linear relationship between the ignition delay and the 

unburned HC in the exhaust. Figure 6.17 shows the correlation between the unburned HC 

and ignition delay. While there are too few data points shown in Figure 6.17 to accurately 

identify the type of relationship between HC and ignition delay, the general trend is 

consistent with that identified by Monyem [78]. The unburned HC amount decreased as the 

ignition delay become shorter. Both neat biodiesels, which had shorter ignition delays than 

the No. 2 diesel fuel, had less HC in the exhaust. The two biodiesel blends, which had 

identical ignition delays to the No. 2 diesel fuel, had similar amounts of HC in the exhaust as 

the No. 2 diesel fuel. 

The CO emissions also increase with the aromatics content of the fuel since aromatics 

exhibit slower combustion and, in some cases, do not allow the reaction to go to completion 

[108]. With shorter ignition delay, the biodiesel fuels have slightly more time to complete the 

reaction to proceed from CO to COz Figure 6.18 shows the correlation between CO and 

ignition delay. The CO amount in the exhaust decreased as ignition delay becomes shorter. 
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Monyem [78] found a linear relationship between ignition delay and CO emission and the 

data presented here are consistent with that observation. 

6.4.3. Effect of Start of Fuel Injection on Smoke Number 

Soot particles are primarily produced from the carbon contained in the fuel and 

depend on the type of fuel, the number of carbons in the molecule, and the C/H ratio of the 

fuel. Another reason for the soot emissions in the exhaust is the balance of soot formation 

and oxidation reactions. It has been found that the carbon/oxygen (C/O) ratio is an important 

factor in the soot oxidation [111]. The C/H ratios of the tested fuels were shown in Table 

6.2. The C/H ratios for No. 2 diesel fuel, SME, and YGME were 6.82, 6.53, and 6.24, 

respectively. The SME and YGME fuel both had 0.29% and 0.58% lower C/H ratio than No. 

2 diesel fuel, respectively. However, both biodiesels contained around 11% oxygen. 

Figure 6.19 shows the relationship between the start of injection and the smoke 

number. Both biodiesels had earlier timings for the start of fuel injection than for No. 2 diesel 

fuel. Both biodiesels showed lower smoke numbers than No. 2 diesel fuel which had the 

highest smoke number among the fuels. The intermediate points seen in the figure are the 

blends. Yahya [103] found a significant reduction in smoke number of from 81% to 85% 

compared to No. 2 diesel fuel when he fueled the engine with soybean oil-based biodiesel. 

Monyem [78] also studied the effect of the injection timing on the smoke number and found 

similar results. 

6.4.4. Effect of Start of Fuel Injection and the Start of Combustion on NO, Emissions 

Nitric oxide (NO) and nitrogen dioxide (NO2) are usually grouped together as NOx. 

The formation of NOx depends very strongly on the temperature. It is also highly dependent 
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Figure 6.19: Effect of start of fuel injection on smoke number 

18 

on oxygen concentration. Accordingly, high temperature and high oxygen concentration 

increase the quantities of NOx produced in the exhaust. The main factor that affects oxygen 

concentration is the overall fuel/air ratio. NO* emissions are roughly proportional to the 

quantity of fuel in diesel combustion. The start of injection also effects the NOx formation. If 

fuel injection is delayed, combustion starts later and the temperature peak will be lower 

[HI].  

The relationship between the start of fuel injection and the NO* emissions is shown in 

Figure 6.20. Both biodiesels had earlier timings for the start of fuel injection than for No. 2 

diesel fuel. Other researchers [3, 16, 67, 102] have observed that NOx emissions appear to be 

linearly related to the timing of the start of fuel injection. 
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Figure 6.20: Effect of start of fuel injection on BSNO, 

As mentioned earlier, the delay in the start of fuel injection results in later 

combustion. The relationship between the start of combustion and the NOx emissions is 

shown in Figure 6.21. The neat biodiesels had earlier timings for the start of combustion than 

for No. 2 diesel fuel. A similar result was obtained by Monyem [78]. Another reason for the 

advanced start of combustion for the neat biodiesels was their higher cetane numbers. The 

ignition delay period for the higher cetane number fuel is shorter than for the lower cetane 

number fuel. So the higher cetane number fuel will ignite earlier than the lower cetane 

number fuel. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

The objective of this study was to investigate the use of low-cost, high free fatty acid 

feedstocks to produce commercially viable biodiesel. To accomplish this objective the 

following tasks were identified. 

> Develop a technique to convert high free fatty acid feedstocks to fuel quality biodiesel. 

> Implement the biodiesel production technique in a pilot plant. 

> Compare the performance and emissions of a diesel engine fueled with biodiesel from 

high free fatty acid feedstocks with biodiesel from soybean oil and with petroleum-based 

diesel fuel. 

The following sections describe the main conclusions that were derived from 

accomplishing these three tasks. The last section makes some recommendations for future 

work. 

7.1. Process Development 

In the early part of this project, the experiments showed that feedstocks with high free 

fatty acids could not be transesterified with the alkaline catalysts which have been used with 

good success for vegetable oils. Alkaline catalysts form soap when they react with the FF As. 

Soap removes the catalyst from the reaction and prevents the separation of the glycerin and 

the ester. It was determined that acid catalysts could be used for transesterification and do not 

have these disadvantages. Therefore, the effect of the molar ratio of alcohol, reaction 

temperature, catalyst amount, reaction time, water, and FF A level on the preparation of 

methyl ester from soybean oil was studied in an acid-catalyzed transesterification reaction 

with sulfuric acid catalyst. 



www.manaraa.com

193 

After the acid-catalyzed reaction with soybean oil was understood, a synthetic high 

FF A feedstock was prepared by adding a pure FF A to soybean oil and tests were conducted 

to investigate the preparation of methyl ester from the material with high FFA. In this part of 

the project, the effect of variables such as methanol molar ratio, acid catalyst amount, and 

reaction time on the reduction of FFA level were studied. This part of the study showed that 

the FFA level of the feedstocks could be reduced to less than 1% with a 2-step process of 

acid-catalyzed pretreatment. It was concluded that the high FFA feedstocks were most 

efficiently transesterified by a combination of acid-catalyzed pretreatment followed by an 

alkaline-catalyzed main reaction. 

In the final step of the process development, actual samples of high FFA feedstocks 

such as yellow and brown grease were processed and compared to the simulated high FFA 

feedstock study. In this part of the study, the effect of different alkaline catalysts and their 

amounts on the main transesterification reaction, the residual soap, and the residual catalyst 

were analyzed. The effect of the solubility of the alcohol, the number of steps in the acid-

catalyzed pretreatment reaction, and the alkaline catalyst type and amount on the yield were 

also discussed. The following specific conclusions are based on the process development 

portion of this project. 

1. Acid-catalyzed transesterification is much slower than alkali-catalyzed transesterification. 

The ester conversion efficiency is strongly affected by the molar ratio of alcohol to oil. In 

acid-catalyzed esterification, a higher molar ratio is required than for alkali-catalyzed. 

The completeness of ester formation increased with increasing acid catalyst amount. 

2. Alcohols with high boiling temperature increase ester conversion. The higher reaction 
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temperatures allowed by longer chain alcohols apparently dominate any tendency toward 

reduced reaction rates for these alcohols. 

3. The ester conversion is strongly inhibited by the presence of water in the oil. If the water 

concentration is greater than 0.5%, the ester conversion rate may drop below 92%. The 

amount of free fatty acids in the feedstock oil or fat can also have a significant effect on 

the transesterification reaction. The water formed by the esterification of the free fatty 

acids inhibits further reaction. Free fatty acid levels above 5% can lower the ester 

conversion rate below 90%. 

4. The acid-catalyzed pretreatment reaction decreased the acid value of the synthetic 

mixture to less than 2 mg KOH/g with a 2-step process. Using the 2-step acid catalyzed 

pretreatment followed by an alkali-catalyzed final reaction, the transesterification 

reaction was completed in much less time than would be possible with acid-catalyzed 

transesterification alone. 

5. In acid-catalyzed esterification, a higher molar ratio of alcohol to oil is required to 

decrease the acid value of the feedstock. If a lower molar ratio is used, the FFA level of 

the feedstock requires much more time to reach acceptable levels. 

6. Increasing the acid catalyst amount is very effective in decreasing the acid value of the 

mixture. In the first step, at a 10:1 molar ratio for 30 minutes of reaction time, the acid 

value of the mixture (41.33 mg KOH/g as palmitic acid) was reduced to 1.37 mg KOH/g 

and 7.15 mg KOH/g for 15% and 3% acid catalyst, respectively. 

7. Ethanol, which has a higher boiling temperature than methanol, decreased the FFA level 

of the synthetic mixture faster than methanol. The higher reaction temperatures may be 

the reason for this difference. 
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8. With KOH as the alkaline catalyst, it was found that 1 mg KOH/g (0.5% FFA) was a 

better target for acid value reduction. After decreasing the acid value of the feedstock to 

less than 0.5% FFA level, the KOH-catalyzed transesterification gave good ester 

conversion. 

9. The two-step acid catalysis pretreatment process was successful in decreasing the acid 

value of yellow grease to less than 1 mg KOH/g but a higher molar ratio and more time 

were required than was expected based on the work with the simulated high FFA 

feedstock. 

10. After pretreating yellow grease to decrease its acid value to less than 1 mg KOH/g, the 

alkaline catalyst transesterification gave good ester conversion. The alkaline catalyst type 

is an important factor and the best yield, 82.2%, was obtained with 0.35% metallic 

sodium. 

11. The pretreatment reaction can be accomplished in a I-step process without separation and 

at a higher molar ratio. But for this case, more excess alkaline catalyst is required to 

neutralize the acid level of the mixture in the transesterification reaction. This type of 

process reduced the ester yield. 

12. It was observed that the alkaline catalyst amount and type effect the transesterification 

reaction completeness and yield. NaOCHj is much stronger than KOH. The best result 

was obtained with 0.21% NaOCHs with a 2-step pretreatment and the yield, total 

glycerin, and specific gravity were 75.12%, 0.1772%, and 0.8748, respectively. 

13. In the glycerin separation and biodiesel washing process, it was observed that most of the 

soap and catalyst were removed with the glycerin phase for soybean oil. For yellow and 

brown grease, the glycerin did not separate but could be removed by water washing. 
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7.2. Pilot Plant Development 

Another task of this project was to implement the biodiesel production technique in a 

pilot plant. Therefore, a pilot plant was built in the BECON Facility in Nevada, Iowa. A large 

number of tests were run to optimize the pilot plant for biodiesel production. 

The following summary statements can be drawn from the experience of designing 

and operating a pilot plant-scale biodiesel production facility. Some of the conclusions are 

based on 3 case studies that were presented for producing biodiesel from soybean oil, yellow 

grease with 9% FFA, and brown grease with 40% FFA. 

1. The results showed that the method developed in small-scale biodiesel production was 

valid for large-scale production if good mixing was maintained. The mixing process is 

very important in determining the completeness of the transesterification reaction and on 

the product yield. 

2. The two-step acid catalysis process was successful in decreasing the acid values of the 

yellow grease and brown grease to less than 2 mg KOH/g. However, the brown grease 

required 10% acid catalyst in the 2-step pretreatment reaction. After decreasing the acid 

value of the feedstocks, alkaline catalyst transesterification gave good ester conversion 

and the biodiesels met the total and free glycerin specifications. 

3. Glycerin separation takes a longer time following transesterification of pretreated yellow 

grease and brown grease than for soybean oil. The number of washing cycles is very 

important and affects the total glycerin amount in the ester produced from pretreated 

feedstocks with high FFA. When the number of washing cycles was increased from 4 to 

6, the total glycerin amount in the ester decreased from 0.29% to 0.23%. 
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4. The costs to produce biodiesel from soybean oil, yellow grease with 9% FFA, and brown 

grease with 40% FFA were compared to each other. The average costs for soybean oil-

based methyl ester, YGME, and BGME were $1.584, $1.177, and $0.911, respectively. 

These costs do not include capital costs. 

7.3. Engine Performance and Emissions Evaluation 

The final task of this study was to compare the performance and emissions of a diesel 

engine fueled with biodiesel from a high FFA feedstock, with biodiesel from soybean oil and 

with No. 2 diesel fuel. The following conclusions can be drawn from the experimental results 

of this part of the study. 

1. Both of the methyl esters and their blends gave nearly identical thermal efficiency with 

No. 2 diesel fuel. The BSFCs for the esters were higher than for diesel fuel. The increases 

in BSFC were 13.53% and 14.24% for the neat SME and YGME, respectively. The 

reason for the higher BSFC for the neat esters may be attributed to their lower heating 

values. The heating values of the methyl esters are about 12% less than for No. 2 diesel 

fuel. 

2. The neat SME and YGME, and their blends, produced lower CO emissions than No. 2 

diesel fuel. The reduction in CO emissions was 18.22% for SME and 17.77% for YGME. 

There was almost no difference between the CO emissions of the neat methyl esters. 

There was almost no significant difference between the COi emissions of the all fuels 

used in the engine test. The HC emission levels from neat SME and YGME were lower 

than for No. 2 diesel fuel. The reduction in HC emissions was 42.50% for SME and 

46.27% for YGME. The Bosch Smoke Number (SN) was significantly reduced when the 
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engine was fueled with the methyl esters and their blends. The reduction in SN was 

61.05% for neat SME and 64.21% for neat YGME. 

3. The neat methyl esters had higher NOx emissions than the No. 2 diesel fuel. The increase 

in NOx was 13.09% with SME and 11.60% with YGME. However, the NOx levels of the 

20% blends were close to No. 2 diesel fuel. 

4. For the neat methyl esters, the start of fuel injection was earlier than for the No. 2 diesel 

fuel. The SME and YGME fuel both injected about 2.68° and 3.55° earlier than No. 2 

diesel fuel, respectively. For the neat methyl esters, the timings for the start of 

combustion were earlier than for the No. 2 diesel fuel. The start of combustion for No. 2 

diesel fuel, 20% SME, 20%YGME, SME, and YGME were 7.42°, 8.33°, 8.50°, 10.83°, 

and 11.58° BTDC, respectively. The SME and YGME fuel both started to burn about 

3.41° and 4.16° earlier than No. 2 diesel fuel, respectively. 

5. For the neat methyl esters, the ignition delay periods were slightly shorter than for the 

No. 2 diesel fuel. The ignition delay for No. 2 diesel fuel, 20% SME, 20% YGME, SME, 

and YGME were 6.09°, 6.07°, 6.10°, 5.34°, and 5.46°, respectively. 

7.4. Recommendations for Future Work 

This section makes several suggestions based on this experiment. These suggestions 

will provide additional information about biodiesel production from high FFA feedstocks and 

about its effect on engine performance and emissions. 

1. The reasons for the differences in the effectiveness of the acid catalyst pretreatment 

reaction between the synthetic mixture and the yellow and brown grease feedstocks 

should be investigated. 
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2. Recovery of glycerin and methanol in biodiesel production should be studied and a 

recovery unit should be added to the pilot plant to reduce the cost of the biodiesel from 

high FF As. 

3. To increase the biodiesel yield, the ester and feedstock lost in the methanol-water mixture 

separation should be recovered during the pretreatment of the feedstock. 

4. The effect of different alcohol types on the cold temperature properties of the biodiesel 

from high FFA feedstocks should be evaluated. 

5. Since biodiesel from high FFA feedstocks contains more saturated components than 

biodiesel from vegetable oil, the oxidation stability of biodiesel produced from feedstocks 

with high FFA should be investigated as a possible performance advantage. 

6. Durability testing for the biodiesel produced from feedstocks with high FFA would 

provide information about whether the saturated biodiesel has any effect on the engine 

components. 
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APPENDIX A: 
AOCS OFFICIAL METHOD CA 14-56 FOR TOTAL, FREE AND COMBINED 

GLYCEROL TEST [95] 

Definition: This method determines total, free and combined glycerol in fats and oils. The 

total glycerol is determined after saponification of the sample, the free glycerol directly on 

the sample as taken and the combined glycerol by difference. 

Scope: Applicable to the determination of total and free glycerol in fats and oils. 

Apparatus: 

1. Buret, 50 ml, accurately calibrated. 

2. Meniscus magnifier suitable to permit reading the buret to 0.01 ml. 

3. Flask, 1 liter volumetric with glass stopper. 

4. Pipettes, volumetric, 10 ml, 25 ml, 50 ml and 100 ml. The 25-mL and 50 ml must 

conform to NBS tolerances and accurately calibrated to deliver 25 and 50 ml. 

5. Beakers, 400 ml and watch glasses to serve as covers. 

6. Variable speed electric stirrer with glass stirrer. 

7. Graduated cylinders, 100 ml and 1,000 ml. 

8. Erlenmeyer flasks, borosilicate glass, 250 or 300 ml, and air condensers 65 cm long. The 

flasks and condensers should have 24/40 ground glass joints. 

Reagents: 

1. Periodic acid (HIO4 2Hz0), reagent grade, purchased from a chemical supplier (see Notes, 

Caution). 

2. Sodium thiosulfate, Na^S^ 5HzO, reagent grade. 

3. Potassium iodide (KI), reagent grade. 

4. Glacial acetic acid, reagent grade, 99.5% (see Notes, Caution). 
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5. Starch solution, prepared as noted in Solution, item 4, tested for sensitivity as follows-

Place 2 ml of starch solution in 100 ml of distilled water and add 0.05 ml of 0.1 N iodine 

solution. The deep blue color produced must be discharged by 0.05 ml of 0.1N sodium 

thiosulfate. 

6. Chloroform (CHCb), reagent grade (see Notes, Caution and Recommendation). Blank 

tests with periodic acid with and without chloroform must agree within 0.5 ml. If they do 

not, a fresh supply of chloroform must be obtained. 

7. Potassium dichromate, reagent grade. The potassium dichromate is finely ground and 

dried to constant weight at 105 to 110 C before using. 

8. Hydrochloric acid (HCI), reagent grade, concentrated, sp.gr. 1.19 (see Notes, Caution). 

9. Potassium hydroxide (KOH), reagent grade pellets (see Notes, Caution). 

10. Ethyl alcohol, 95%. U.S.S.D Formulas 30 or 3A are permitted (see Notes, Caution). 

Solutions: 

1. Periodic acid solution, dissolve 5.4 g of periodic acid, in 100 ml distilled water and then 

add 1900 ml of glacial acetic acid and mix-thoroughly. Store the solution in a dark, glass-

stoppered bottle or store in the dark in a clear, glass-stoppered bottle. 

Note - Only glass-stoppered bottles should be used. Do not use cork or rubber stoppers under 

any circumstances. 

2. Sodium thiosulfate solution 0.1 N, prepared by dissolving 24.8 g of sodium thiosulfate in 

distilled water and diluting to 1 liter. The solution is standardized as follows - Pipet 25 ml 

of the standard dichromate solution (Solutions, 5) into a 400 ml beaker. Add 5 ml of 

concentrated HC I, 10 ml of KI solution (Solutions, 3) and rotate to mix (a magnetic 

stirrer and stirring bar may be used). Allow to stand for 5 minutes without mixing and 
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then add 100 ml of distilled water. Titrate with the sodium thiosulfate solution, stirring 

continuously until the yellow color has almost disappeared. Add 1 to 2 ml of starch 

solution and continue the titration, adding the thiosulfate solution slowly, until the blue 

color just disappears. The strength of the thiosulfate solution is expressed in terms of 

normality -

2.5 
Normality ofNa^O^ = 

ml N32S2Û3 required 

3. Potassium iodide (KI) solution prepared by dissolving 150 g of K1 in distilled water and 

dilution 1 liter. Protect this solution from the light. 

4. Starch indicator solution, prepared by making a homogeneous paste of 10 g of soluble 

starch in cold distilled water. Add this paste to 1 liter of rapidly boiling distilled water, 

stir rapidly for a few seconds and cool. Salicylic acid (1.25 g per liter) may be added to 

preserve the starch. The solution should be stored in a refrigerator (4 to 10C) when not in 

use. Fresh indicator must be prepared when the end point of the titration fails to be sharp, 

or if the starch solution fails the sensitivity test (see Reagents, 5). 

5. Standard potassium dichromate solution, 0.1 N prepared by dissolving 4.9035 g of finely 

ground and dried potassium dichromate in distilled water in a 1 liter volumetric flask and 

making up to volume at 25 C. 

6. Alcoholic KOH solution, prepared by dissolving 40 g of KOH in 1 liter of 95% ethyl 

alcohol. Filter solution before using if it is cloudy. 
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Procedure for Total Glycerol: 

1. Weigh duplicate samples accurately to ± 0.1 mg into an Erlenmeyer flask. The proper 

sample size is indicated in Table 1. 

2. Add the indicated amount of alcoholic KOH (Table 1), connect the air condenser and 

gently boil for 30 minutes. 

3. Add the indicated amount (Table 1) of chloroform (see Notes, Caution), measured from a 

buret to within ± 0.2 ml to a 1 liter volumetric flask. Then add with a graduate cylinder 

25 ml of glacial acetic acid (see Notes, 1 ). 

4. Remove the saponification flask from the hot plate or steam bath, wash down the 

condenser with a little distilled water, disconnect the condenser and transfer the sample 

quantitatively to the volumetric flask, washing the flask, using approximately 500 ml of 

distilled water. 

5. Stopper and shake the flask vigorously for 30 to 60 seconds. 

6. Add distilled water to the mark, stopper and mix thoroughly by inverting and set aside 

until the aqueous and chloroform layers separate. 

7. Pipet 50 ml of periodic acid reagent into a series of 400 ml beakers, and prepare two 

blanks by adding 50 ml of distilled water to each. 

8. Pipet 50 of the aqueous layer obtained in step 6 above into a 400-mL beaker containing 

50 ml of the periodic acid reagent and shake gently to effect thorough mixing. Cover with 

a watch glass and allow to stand for 30 minutes (see Notes, 1). 

Note - If the aqueous solution contains suspended matter, filter before pipetting the sample 

for the test. 

9. Add 20 ml of KI solution, mix by gently shaking and allow to stand 1 minute (but never 



www.manaraa.com

204 

more than 5 minutes) before titrating. Do not allow to stand in bright light or direct 

sunlight. 

10. Dilute the sample to approximately 200-mL with distilled water and titrate with the 

standardized sodium thiosulfate solution. Continue the titration until the brown iodine 

color has almost disappeared. Add 2 ml of starch indicator solution and continue the 

titration until the blue iodine-starch complex color just disappears. 

11. Read the buret to nearest 0.01-mL. 

12. The blank determinations are handled in exactly the same way as the samples, see 

Procedure, steps 9 and 10. 

13. If the titration of the sample (Procedure, step 11) is less than 0.8 of the titration of the 

blank (Procedure, step 12), then-

a) Repeat the test using smaller portions (50, 25, 10 and 5 ml in Procedure, step 8, until 

the titration of the sample is more than 0.8 of the blank, or 

b) If 10 ml (or less) of the sample solution is necessary to bring the titration within the 

limit noted in Procedure, step 13, (a), repeat the test starting at the beginning 

(Procedure, step 8) with a smaller sample of 2 g or less. 

14. If the titration of the blank (Procedure, 12), minus the titration of the sample is less than 4 

ml, then 

a) Repeat the test using 100 ml in step 8 of Procedure. If the portion taken for the test is 

still too small, repeat the test beginning with step 1 of Procedure, using twice as much 

sample, or 

b) If doubling the sample size exceeds 10 g, use only 10 g. 
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Table 1 
Total glycerol 

(%) 
Approximate 

size sample (g) 
Weighing 

accuracy (g) 
Alcoholic potassium 

hydroxide (ml) 
CHCl3 to be 
added (ml) 

10 to 40 2 ± 0.001 50 99 ± 0.2 
5 to 20 4 ± 0.003 50 96 ± 0.2 
2 to 8 10 ±0.01 100 91 ±0.2 

Procedure for Free Glycerol: 

1. Weigh approximately 10-g ± 0.01 g of sample into a weighing dish. 

2. Melt the sample by warming on a hot plate and wash into a 1-liter volumetric flask with 

90 ml of chloroform, measured from a buret to within ± 0.2-mL. 

3. Add approximately 500 ml of distilled water, stopper and shake the flask vigorously for 

30 to 60 seconds. 

4. Add distilled water to the mark, stopper and mix thoroughly by inverting and set aside 

until the aqueous and chloroform layers separate. 

5. Pipet 50 ml of periodic acid reagent into a series of 400 ml beakers, and prepare two 

blanks by adding 100 ml of distilled water to each. 

6. Pipet 100 ml of the aqueous-layer obtained in step 4 above into a 400-mL beaker 

containing 50 ml of the periodic acid reagent and shake gently to effect thorough mixing. 

Cover with a watch glass and allow to stand for 30 minutes (see Notes, I). 

Note - If the aqueous solution contains suspended matter, filter before pipetting the sample 

for the test. 

7. Add 20 ml of KI solution, mix by gently shaking and allow to stand 1 minute (but never 

more than 5 minutes) before titrating. Do not allow to stan4 in bright light or direct 

sunlight. 

8. Dilute the sample to approximately 200-mL with distilled water and titrate with the 
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standardized sodium thiosulfate solution. Continue the titration until the brown iodine 

color has almost disappeared. Add 2 ml of starch indicator solution and continue the 

titration until the blue iodine-starch complex color just disappears. 

9. Read the buret to nearest 0.01-mL. 

10. The blank determinations are handled in exactly the same way as the samples, see 

Procedure, steps 7 and 8. 

11. If the titration of the sample (Procedure, step 9) is less than 0.8 of the titration of the 

blank (Procedure, step 12), then repeat the test using a smaller sample size. 

Calculations: 

1. Report the total glycerol to the nearest 0.1% 

To,a lglycerol,%.<B-S)xNx2-302 

w 

Where; S= titration of sample 

B= titration of blank 

N= normality of sodium thiosulfate solution 

W= weight of sample represented by aliquot (ml) taken for sample analysis in 

procedure for total glycerol in which, 

weight of sample(a) x ml of sample(b) 

W= 

900 

(a) From Procedure, 1 
(b) From Procedure, 8 

2. Free glycerol, %, is calculated the same as for total glycerol, using the values obtained as 

directed in Procedure for Free Glycerol. 
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3. Combined glycerol in fat or oil, % = (total glycerol in fat or oil, %) - (free glycerol in fat 

or oil, %). 

Notes: Caution 

Periodic acid is an oxidizing agent and dangerous in contact with organic materials. It 

is a strong irritant. It decomposes at 130 C. Do not use cork or rubber stoppers on storage 

bottles. 

Chloroform is a known carcinogen. It is toxic by inhalation and has anesthetic 

properties. Avoid contact with the skin. Prolonged inhalation or ingestion can lead to liver 

and kidney damage and may be fatal. It is nonflammable, but will burn on prolonged 

exposure to flame or high temperature, forming phosgene gas when heated to decomposition 

temperatures. Can react -explosively with aluminum, lithium, magnesium, sodium, potas

sium, disilane, N2O4, and a mixture of sodium hydroxide + methanol. The TLV is 10 ppm in 

air. A fume hood should be used at all times when using chloroform. 

Hydrochloric acid is a strong acid and will cause severe burns. Protective clothing 

should be worn when working with this acid. It is toxic by ingestion and inhalation and a 

strong irritant-to eyes and skin. The use of a properly operating fume hood is recommended. 

When diluting the acid, always add the acid to the water, never the reverse. 

Acetic acid in the pure state is moderately toxic by ingestion and inhalation. It is a 

strong irritant to skin and tissue. The TLV in air is 10 ppm. 

Potassium hydroxide, like all alkalies, can burn 'skin, eyes, respiratory tract severely. 

Wear heavy rubber gloves and face shield to protect against concentrated alkali liquids. Use 

effective fume removal device or gas mask to protect respiratory tract against alkali dusts or 

vapors. When working with extremely caustic materials like potassium hydroxide, always 
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add pellets to water and not vice versa. Alkalies are extremely exothermic when mixed with 

water. Take precautions to contain the caustic solution in the event the mixing container 

breaks from the extreme heat generated. 

Ethyl alcohol (ethanol) is flammable. Use a fume hood when heating or evaporating 

this solvent. 

Precision: 

Collaborative studies have shown that the following 95% confidence limits may be expected: 

Total and Combined 
Glycerol at Level of 

Free Glycerol 
at Level of 

10.0 0.2 0.5 0.05 
Duplicate determinations made on the same day 
by an analyst should not differ more than 
approximately. 

0.10 0.10 0.01 0.01 

Single determinations made in two different 
laboratories should not differ more than 
approximately 

0.30 0.17 0.17 0.03 

Averages of duplicate determinations made in 
two different laboratories should not differ by 
more than approximately 

0.28 0.14 0.17 0.03 

Recommendations 

Cyclohexane and iso-octane may be considered as replacements for chloroform in 

this method. These solvents have not been collaboratively studied within the AOCS, but 

laboratories may want to try them on an experimental basis. This recommendation does not 

represent official approval by the AOCS Uniform Methods Committee. 

Numbered Notes 

Samples may be allowed to stand 1.5 hours at room temperature before titrating, but 

never longer. Do not allow samples to stand in bright light or direct sunlight. 
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APPENDIX B: 
AOCS OFFICIAL METHOD CD 3A-63 FOR ACID VALUE TEST (97] 

The acid value is the number of milligrams of potassium hydroxide (KOH) necessary 

to neutralize the free acids in I gram of sample. This method is applicable to crude and 

refined animal, vegetable, and marine fats and oils, and various products derived from them. 

The necessary apparatus, reagents, test procedure and the calculations for the acid value test 

are explained below. 

Apparatus: 

1. Erlenmeyer flasks, 250 ml. 

2. Burette, 50 ml. 

Reagents: 

1. Potassium hydroxide (KOH), 0.1 N and 0.0IN in water. 

2. Solvent mixture contains of equal parts by volume of isopropyl alcohol and toluene. 

3. Phenolphthalein indicator solution, 1.0% in isopropyl alcohol. 

Procedure: 

1. Add 0.8 ml phenolphthalein indicator solution to 50 ml of solvent mixture (1:1 isopropyl 

alcohol - toluene) and neutralize with alkali (0.0IN KOH) to a faint but permanent pink 

color. The amount of alkali (0.0IN KOH) used to neutralize the solvent mixture is the 

blank (B). 

2. Determine the sample size from Table 1 by comparing the expected acid value. Higher 

acid value needs less amount of sample and lower acid value needs a large amount of 

sample. 
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Table 1: Sample size for the test 

Acid Value Wt. of Sample (gm) 
Oto 1 20 
1 to 4 10 

4 to 15 2.5 
15 to 75 0.5 

75 and over 0.1 

3. Weigh the specified amount of sample from Table A. 1 into an Erlenmeyer flask. 

4. Add 50 ml of solvent mixture (1:1 isopropyl alcohol - toluene). Be sure that the sample is 

completely dissolved. Warming may be necessary in some cases. 

5. Shake the sample vigorously while titrating with standard alkali (0.1N or 0.0IN KOH 

depending upon intensity of acid value in the sample) to the first permanent pink color of 

the same intensity as that of the neutralized solvent. The color must persist for 30 

seconds. The amount of standard alkali used in this step is A, where A is defined below. 

Calculation: 

The acid value, mg KOH/g of sample = (A-B) * N * 56.1/W 

Where; A= ml of standard alkali (0.1N or 0.01N KOH) used in the titration 

B= ml of standard alkali (0.1N or 0.01N KOH) used in the titrating the blank 

N= normality of the standard alkali (0.1 or 0.01N KOH) 

W= grams of sample 
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APPENDIX C: 
SOAP AND CATALYST TEST IN ESTER, WASH WATER, AND GLYCERIN 

Soap, free fatty acids and catalyst are treated together because they are related 

compounds. Most biodiesel is produced using an alkaline catalyst such a sodium methoxide, 

sodium hydroxide, or potassium hydroxide. Any free fatty acids that are present will react 

with the alkaline catalyst to form soaps. These soaps are then removed during the washing 

process. The washing process also removes any residual catalyst. 

To investigate the amount of residual catalyst and soap formed during the 

transesterification reaction, an experiment was conducted to determine the effectiveness of 

water washing. A batch of methyl ester was produced from a food-grade soybean oil using 

potassium hydroxide as the catalyst. The methyl ester was separated from the mixture of 

methyl ester, soap and catalyst by washing with distilled water. The steps of the washing 

process were as follows. [78] 

1. Add 100 cc of distilled water to a 500 ml separatory funnel containing approximately 200 

cc of raw methyl ester (mixture of methyl ester soap, catalyst, and unreacted methanol) 

Shake the distilled water and the raw methyl ester mixture. 

2. Wait until the soapy water separates from the mixture. 

3. Separate the soapy wash water from the mixture and place into a 150 ml flash for later 

soap and catalyst tests. The soapy water also contains a portion of the unreacted methanol 

and catalyst. 

4. Repeat steps 1-3 seven times and keep all the wash water samples in 150 ml flasks for 

measurement of soap and catalyst. 
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The amount of soap and residual catalyst in the methyl ester was determined by 

adding a sample of the wash water to a larger quantity of ethanol and titrating with 0.01N 

HCI using a phenolphthalein indicator solution. The amount of residual catalyst was 

calculated from the formula: 

%Catalyst (as potassium hydroxide) = ^qqq^ * * ^0 

where; Q = milliequivalents of 0.0IN HCI added 
(milliequivalent =ml of HCL * Normality of HCL) 

q = sample size in grams 

For the soap measurement, 4-5 drops of bromophenol blue indicator solution was 

added and the titration continued to the yellow end point. The amount of soap was calculated 

from the formula: 

O *304.4 
% Soap (as sodium oleate) = — * 100 

1000*g 

where; O2 = milliequivalents of additional 0.0IN HCI added. 
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APPENDIX D: 
CALIBRATIONS OF THE PRESSURE TRANSDUCERS 

Two pressure transducers were used to measure cylinder pressure and injection 

pressure during the engine test. These transducers were Kistler models 606IB and 6230M1. 

The Table D.l shows the specifications of these pressure transducers. 

Table D.l: Specifications of the pressure transducers 

Type Application Range Linearity 
Kistler Model 606IB Cylinder Pressure 0-250 Bar ±0.2 (full Scale) 

Kistler Model 6230M1 Injection Pressure 0-250 Bar -

The pressure transducer produces an electrical charge when pressure applied to its 

diaphragm, and the charge amplifier produces an output voltage in proportion to this charge. 

Therefore, calibration is necessary to determine the relationship cf pressure input to voltage 

output for the system. For the model 6230M1, the factory calibration was used. But before 

installation the model 606IB pressure transducer, it was calibrated using a dead weight tester 

and a digital voltmeter. The calibration procedure was to load and unload the known weights 

on the tester plate. The output signal charged by the transducer was amplified by a PCB 

Model 462A charge amplifier as a voltage. A Pentium H computer with a Lab-View program 

recorded the voltage. A linear regression analysis was used to fit a straight line for the 

collected pressure data as shown in Figure D.l. 

For this transducer the general equation to calculate the pressure in the cylinder is as 

follows: 

P = A + B * V 
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Where; P = cylinder pressure (bar) 

V = voltage output from the transducer 

A and B = linear regression coefficients 

A = 0.0557 

B= 10.177 

The Kistler Model 6230M1 pressure transducer was installed in the fuel injection line 

to measure injection pressure. The sensitivity of this transducer was 1.755 pC/bar. The 

sensitivity of the charge amplifier was 322 pC/Volt. Using these information, the sensitivity 

of the pressure transducer was calculated 183.476 bar/Volt. 
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y = 10.177x +0.0557 
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Figure D.l: Calibration of the Kistler model 6061B pressure transducer 
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APPENDIX E: 
CALIBRATION CURVES OF THE EMISSION ANALYZERS 
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Figure E.l: Calibration curve of 0% exhaust gas analyzer 
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Figure E.2: Calibration curve of CO exhaust gas analyzer 
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Figure E.3: Calibration curve of CO% exhaust gas analyzer 
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Figure E.4: Calibration curve of HC exhaust gas analyzer 
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Figure E.5: Calibration curve of NO exhaust gas analyzer 
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Figure E.6: Calibration curve of NO, exhaust gas analyzer 
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APPENDIX F: 
ANOVA TABLES 

This section contains a sample SAS program written for the statistical analysis and 

ANOVA tables for engine performance and emissions. In the ANOVA tables, DF represents 

the degrees of freedom, the F value represents the probability distribution in repeated 

sampling, and Pr > F represents the probability level. The significance level (Pr > F value) of 

the fuels on the dependent variable can be identified from the ANOVA tables. For all of the 

statistical analyses of this study, a 95% confidence interval was used. 

A sample SAS program for ANOVA and Tukey's Grouping. 

FILENAME INI 'd:\Project4\EngineStatAnalysis\BSCO.dat'; 

data p; 
infile INI; 
input BSCO fuel; 

proc format; 
value fuelfrnt 1-No. 2 Diesel' 

2-20% SME' 
3-20% YGME' 
4-SME' 
5-YGME'; 

proc anova; 
class fuel; 
model BSCO = fuel; 
format fuel fuelfmt.; 
means fuel/TUKEY ; 
run; 
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Table F.l: Analysis of variance (ANOVA) for BSFC 

Dependent Variable: BSFC 
Source DF Sum of Squares Mean Square F Value Pr > F 
FUEL 4 2840.868 710.217 659.58 0.0001 
Error 10 10.768 1.077 
Corrected Total 14 2851.636 

R-Squared = 0.9962; BSFC Mean = 243.504 

Table F.2: Analysis of variance (ANOVA) for brake thermal efficiency 

Dependent Variable: Thermal Efficiency 
Source DF Sum of Squares Mean Square F Value Pr > F 
FUEL 4 0.135 0.0336 1.31 0.3321 
Error 10 0.258 0.0258 
Corrected Total 14 0.392 

R-Squared = 0.3431 ; Thermal Efficiency Mean = 37.026 

Table F.3: Analysis of variance (ANOVA) for BSCO 

Dependent Variable: BSCO 
Source DF Sum of Squares Mean Square F Value Pr> F 
FUEL 4 0.02276 0.00569 24.95 0.0001 
Error 10 0.00228 0.00023 
Corrected Total 14 0.02504 

R-Squared = 0.9089; BSCO Mean = 0.499 

Table F.4: Analysis of variance (ANOVA) for BSCO% 

Dependent Variable: BSCO: 
Source DF Sum of Squares Mean Square F Value Pr>F 
FUEL 4 562.446 140.612 0.90 0.4982 
Error 10 1558.076 155.808 
Corrected Total 14 2120.523 

R-Squared = 0.2652; BSCO, Mean = 807.580 

Table F.5: Analysis of variance (ANOVA) for BSHC 

Dependent Variable: BSHC 
Source DF Sum of Squares Mean Square F Value Pr > F 
FUEL 4 0.1663 0.04157 97.49 0.0001 
Error 10 0.0043 0.00043 
Corrected Total 14 0.1706 

R-Squared = 0.9750; BSHC Mean = 0.4083 
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Table F.6: Analysis of variance (ANOVA) for BSNO* 

Dependent Variable: BSNOx 

Source DF Sum of Squares Mean Square F Value Pr > F 
FUEL 4 16.989 4.247 87.02 0.0001 
Error 10 0.488 0.049 
Corrected Total 14 17.478 

R-Squared = 0.9721; BSNO, Mean = 19.841 

Table F.7: Analysis of variance (ANOVA) for SN 

Dependent Variable: SN 
Source DF Sum of Squares Mean Square F Value Pr > F 
FUEL 4 1.1359 0.2840 58.96 0.0001 
Error 10 0.0482 0.0048 
Corrected Total 14 1.1841 

R-Squared = 0.9593; SN Mean = 0.7223 

Table F.8: Analysis of variance (ANOVA) for start of fuel injection 

Dependent Variable: Start of Fuel Injection 
Source DF Sum of Squares Mean Square F Value Pr > F 
FUEL 4 24.6794 6.1699 37.60 0.0001 
Error 10 1.6407 0.1641 
Corrected Total 14 26.3202 

R-Squared = 0.9377; Start of Fuel Injection Mean = 15.1453 

Table F.9: Analysis of variance (ANOVA) for start of combustion 

Dependent Variable: Start of Combustion 
Source DF Sum of Squares Mean Square F Value Pr > F 
FUEL 4 38.0417 9.5104 142.66 0.0001 
Error 10 0.6667 0.0667 
Corrected Total 14 38.7083 

R-Square = 0.9828; Start of Combustion Mean = 9.3333 

Table F.10: Analysis of variance (ANOVA) for ignition delay 

Dependent Variable: Ignition Delay 
Source DF Sum of Squares Mean Square F Value Pr > F 
FUEL 4 1.6928 0.4232 1.34 0.0001 
Error 10 3.1691 0.3169 
Corrected Total 14 4.8618 

R-Square = 0.9482; Ignition Delay Mean = 5.8120 
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APPENDIX G: 
RAW DATA COLLECTED FOR ENGINE TEST 

Table G.l: Raw data collected for engine test in first repetition 

Fuel #2 Diesel 100% SME 20% SME 100% YGME 20% YGME 
Date 8/14/00 8/14/00 8/14/00 8/14/00 8/14/00 

Engine Speed (rpm) 1400 1400 1400 1400 1400 

Load (%) 100 100 100 100 100 

Brake Torque (ft . Ibf) 190 190 190 190 190 

Palm (ntnHg) 737.4 737.4 737.4 737.4 737.4 

Ambient Air Temp. (°C) 21 21 21 21 21 
Relative Humidity 55 55 55 55 55 
Pressure Dili, ot Lt-t (m H:U) 2.4 2.4 2.4 2.4 2.4 

Oil Pressure (psi) 48 47 47.5 47.5 48 

Boost Pressure (psi) 2.8 2.8 2.8 2.7 2.8 

Exhaust Pressure (psi) 3.1 3 3 3 3 

Smoke Number (Bosch) 1.13 0.40 0.97 0.40 0.90 

Coolant Count/10 sec. 134.2 136.2 134.1 138.3 124.3 

Fuel Consumption (g/min) 144.85 162.55 148.32 163.58 147.87 

BSFC (g/kW-hr) 230.09 258.21 235.60 259.84 234.89 

Temperature (' F) 

1. Inlet Air Tenp. 73 74 74 74 73 

2. Inlet Manifold Temp. 118 124 123 124 122 

3. Fuel Tenp. 104 104 104 104 104 

4 Cooling Water Inlet Temp. 154 156 157 156 157 

5. Cooling Water Outlet Temp. 172 174 174 174 174 

6. Exhaust Manifold Tenp. 798 806 809 798 806 

7. Exhaust Temp. Shielded 821 808 819 800 814 

8. Exhaust Tenp. Unshield 804 794 802 787 803 

9. Oil Temp. 208 209 209 210 208 

10. Building Cooling Water Inlet 66 66 66 66 66 

11. Building Cooling Water Outlet 79 79 79 79 79 

Emissions: 
U2 (g/kW-nr) 566.044 557.978 558.643 553.231 561.461 

CO (g/kW-hr) 0.563 0.464 0.518 0.482 0.518 
UU2 (g/kW-hr) 777.839 809.608 808.822 803.734 790.740 

HC (g/kW-hr) 0.543 0.317 0.477 0.276 0.487 

NO (g/kW-hr) 17.459 19.144 18.472 18.982 18.528 
NO, (g'kw-hr) 18.334 21.468 19.050 20.797 19.010 

FUe Names: 
Cylinder Pressure cyld21.dat cylsl00l.dat cyls20l.dat cylyl001.dat cyly20l.dat 

Injection Pressure injd21.dat mjsl001.dat mjs20l.dat mjyl001.dat mjy201.dat 
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Table G.2: Raw data collected for engine test in second repetition 

Fuel #2 Diesel 100% SME 20% SME 100% YGME 20% YGME 
Date 8/15/00 8/15/00 8/15/00 8/15/00 8/15/00 

Engine Speed (rpm) 1400 1400 1400 1400 1400 

Load(%) 100 100 100 100 100 

Brake Torque (ft. Ibf) 190 190 190 190 190 

Patm(mmHg) 741.8 741.8 741.8 741.8 741.8 

Antiert Air Temp. (°Q 20 20 20 20 20 

Relative Hunidity 55 55 55 55 55 
Pressure LMt ot Ltb (m H,U) 2.4 2.4 2.4 2.4 2.4 

Oil Pressure (psi) 48 47.5 48 47.5 48 
Boost Pressure (psi) 2.8 2.7 2.7 2.7 2.7 

Exhaust Pressure (psi) 3.1 3.1 3.1 3.1 3.1 

Smoke Number (Bosch) 1.23 0.40 0.87 0.33 0.87 

Coolant Count/10 sec. 132.6 137.5 131.9 140.1 126.1 

Fuel Consunption (g/irin) 143.15 163.42 147.18 164.38 147.19 

BSFC (g/kW-hr) 227.39 259.59 233.79 261.11 233.81 

Temperature (' F) 

1. Inlet Air Tenp. 73 73 73 73 73 

2. Inlet Manifold Temp. 117 121 119 121 119 

3. Fuel Tenp. 104 104 104 104 104 

4 Cooling Water Inlet Tenp. 156 157 155 158 155 

5. Cooling Water Outlet Tenp. 174 174 174 174 174 

6. Exhaust Manifold Tenp. 806 804 800 789 807 

7. Exhaust Tenp. Shielded 819 805 810 796 812 

8. Exhaust Tenp. Unstneld 803 790 795 783 800 

9. Oil Tenp. 209 210 209 210 208 

10. Building Cooling Water Inlet 67 67 68 67 68 

11. Building Cooling Water Outlet 80 80 80 80 80 

Emissions: 
Uj (g/kW-hr) 548.255 572.432 mow 560.507 565.499 

CO (g/kW-hr) 0.548 0.449 0.530 0.440 0.530 
(JUj (g/kW-hr) 823.426 819.881 800.953 819.019 808.339 

HC (g/kW-hr) 0.476 0.270 0.497 0.278 0.498 

NO (g/kW-hr) 18.334 19.293 18.612 19.423 18.225 
NU, (g/kW-tir) 18.984 21.248 19.144 21.140 19.010 

file Names: 

Cylinder Pressure cyld22.dat cyfelQ02.dat cyls202.dat cytyl002.dat cyiy202.dat 

Injection Pressure injd22.dat injslOOldat injs202.dat mjyl002.dat injy202.dat 
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Table G.3: Raw data collected for engine test in third repetition 

Fud #2 Diesel 100% SME 20% SME 100% YGME 20% YGME 

Date 8/15/00 8/15/00 8/15/00 8/15/00 8/15/00 

Engine Speed (rpm) 1400 1400 1400 1400 1400 

Load(%) 100 100 100 100 100 

Brake Torque (ft. Ibf) 190 190 190 190 190 

Patm(mmHg) 741.8 741.8 741.8 741.8 741.8 

Ambient Air Tenp. (°C) 20 20 20 20 20 

Relative Humidity 55 55 55 55 55 
Pressure mit ot Lhb (m H^O) 2.4 2.4 24 24 2.4 

Oil Ressure (psi) 48 48 48 48 48 

Boost Pressure (psi) 2.7 2.7 27 27 2.7 

Exhaust Pressure (psi) 3.1 3.1 3.1 3.1 3.1 

Smoke Number (Bosch) 1.13 0.37 0.87 0.33 0.80 

Coolant Count/10 sec. 135.2 135.8 132.8 141.6 1227 

Fuel Consumption (g/rrin) 143.39 163.79 147.48 164.85 147.41 

BSFC(gfcW-hr) 227.77 260.18 234.27 261.86 234.16 

Temperature (' F) 

1. Inlet Air Tenp. 73 74 73 74 74 

2 Inlet Manifold Tenp. 118 124 121 123 121 

3. Fuel Tenp. 104 104 104 104 104 

4 Cooling Water Inlet Tenp. 157 157 157 156 156 

5. Cooling Water Chalet Temp. 174 175 175 175 174 

6. Exhaust Manifold Tenp. 803 803 805 790 809 

7. Exhaust Tenp. Shielded 820 813 815 799 815 

8. Exhaust Tenp. Unshield 804 790 800 786 801 

9. Oil Temp. 210 211 210 211 210 

10. Building Cooling Water Inlet 69 69 68 69 69 

11. Building Cooling Water Outlet 81 80 80 81 80 

Emissions: 
Oj. (gflew-hr) 560.882 566.456 573.530 562225 571.136 

GO (g/kW-hr) 0.557 0.449 0.494 0.449 0.503 
OOj (#kW-hr) 807.804 822.615 798.319 814.008 808.591 

HC (g/kW-hr) 0.490 0.280 0.489 0.257 0.489 

NO (g/kW-hr) 18.678 19.690 18.512 19.722 18.328 
NO, (g/kw-hr) 19.121 21.110 19.095 21.049 19.062 

FUe Names: 

Cylinder Pressure cyld23.dat cylsl003.dat cyls203.dat cytyl003.dat cyty203.dat 

Injection fressure injd23.dat injsl003.dat injs203.dat injyl003.dat injy203.dat 
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